Analysis and suppression of radial velocity estimation error for moving targets in wideband LFMCW radar
-
摘要:
宽带线性调频连续波(LFMCW)雷达可采用去斜处理实现距离高分辨,从而获取运动目标精细的距离变化信息。针对其运动目标多普勒速度谱存在干扰分量的问题,通过模型推导,分析了该现象产生原因及对目标速度估计的影响,提出了一种基于局部频谱细化的测速误差抑制方法;引入快时间Chirp-z变换对差频信号进行频谱细化,实现在计算量不增加的条件下降低测量误差,提升目标速度估计准确性。通过仿真对比实验验证了所提方法的性能。结果表明:所提方法可有效抑制离散域脉冲压缩引起的残差相位,对宽带LFMCW雷达的测速误差具有较好的抑制作用,对噪声具有更强的鲁棒性,且在计算量上远小于传统的快速傅里叶变换(FFT)方法。
-
关键词:
- 宽带雷达 /
- 去斜处理 /
- 运动目标 /
- 快时间Chirp-z变换 /
- 径向速度估计
Abstract:Stretch processing is typically used by broadband linear frequency modulation continuous wave (LFMCW) radars to achieve high range resolution in the precise measurement of moving targets. However, the sampling echoes of the motion target could cause interference components on the Doppler velocity spectrum. To address such an issue, this paper proposes a novel method to reduce its influence on the estimation of target radial velocity in wideband LFMCW radar. The phenomenon is first studied in theory by using the mathematical model of wideband LFMCW radar echoes. On this basis, a suppression method of radial velocity estimation error for moving targets is proposed. The Chirp-z transform in the fast-time domain is introduced in the refined processing over the beat frequency signal spectrum. It could help improve the estimation accuracy of target radial velocity with much less computational cost. Finally, comparative simulations are carried out to evaluate the performance of the proposed method. The results show that the proposed method can effectively suppress the residual phase caused by pulse compression in the discrete fast-time domain and the estimation error of target radial velocity in the wideband LFMCW radar. Additionally, it performs better in terms of computing cost than the traditional fast Fourier transform (FFT) based approach and is robust to noise.
-
表 1 雷达系统仿真参数
Table 1. Simulation parameters of radar system
参数 数值 载波频率fc /GHz 10 脉宽τp/μs 5 带宽B/GHz 1 脉冲重复间隔Tp/s 1/200 采样率fs/MHz 100 表 2 传统FFT方法与本文方法在相同速度分辨率条件下的计算量对比
Table 2. Comparison of the computational cost between traditional FFT and the proposed method with the same velocity resolution
方法 计算量 传统FFT方法 8418696 本文方法 309 066 -
[1] 祁先锋. 空间碎片观测综述[J]. 中国航天, 2005(7): 24-26.QI X F. Review of space debris observation[J]. Aerospace China, 2005(7): 24-26 (in Chinese). [2] MUNTONI G. Crowded space: a review on radar measurements for space debris monitoring and tracking[J]. Applied Sciences, 2021, 11(4): 1364. doi: 10.3390/app11041364 [3] PIERACCINI M, MICCINESI L. Ground-based radar interferometry: a bibliographic review[J]. Remote Sensing, 2019, 11(9): 1029. doi: 10.3390/rs11091029 [4] ZHOU T H, YANG M M, JIANG K, et al. MMW radar-based technologies in autonomous driving: a review[J]. Sensors, 2020, 20(24): 7283. doi: 10.3390/s20247283 [5] SUN S Q, PETROPULU A P, POOR H V. MIMO radar for advanced driver-assistance systems and autonomous driving: advantages and challenges[J]. IEEE Signal Processing Magazine, 2020, 37(4): 98-117. doi: 10.1109/MSP.2020.2978507 [6] 王海, 徐岩松, 蔡英凤, 等. 基于多传感器融合的智能汽车多目标检测技术综述[J]. 汽车安全与节能学报, 2021, 12(4): 440-455. doi: 10.3969/j.issn.1674-8484.2021.04.002WANG H, XU Y S, CAI Y F, et al. Overview of intelligent vehicle multi-target detection technology based on multi-sensor fusion[J]. Journal of Automotive Safety and Energy, 2021, 12(4): 440-455 (in Chinese). doi: 10.3969/j.issn.1674-8484.2021.04.002 [7] PATOLE S M, TORLAK M, WANG D, et al. Automotive radars: a review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22-35. doi: 10.1109/MSP.2016.2628914 [8] 刘震宇, 陈惠明, 陆蔚, 等. 基于改进经验模态分解的雷达生命信号检测[J]. 仪器仪表学报, 2018, 39(12): 171-178.LIU Z Y, CHEN H M, LU W, et al. Radar vital signal detection based on improved complete ensemble empirical mode decomposition with adaptive noise[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 171-178 (in Chinese). [9] KEBE M, GADHAFI R, MOHAMMAD B, et al. Human vital signs detection methods and potential using radars: a review[J]. Sensors, 2020, 20(5): 1454. doi: 10.3390/s20051454 [10] 黄富传. 基于DSP的毫米波雷达信号处理系统设计[J]. 中国集成电路, 2022, 31(11): 43-48. doi: 10.3969/j.issn.1681-5289.2022.11.008HUANG F C. Design of millimeter-wave radar signal processing system based on the DSP[J]. China Integrated Circuit, 2022, 31(11): 43-48 (in Chinese). doi: 10.3969/j.issn.1681-5289.2022.11.008 [11] GAO X Y, ROY S, XING G B. MIMO-SAR: a hierarchical high-resolution imaging algorithm for mmWave FMCW radar in autonomous driving[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7322-7334. doi: 10.1109/TVT.2021.3092355 [12] 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395-411.WANG J, ZHENG T, LEI P, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395-411 (in Chinese). [13] 马超, 许小剑. 基于宽带LFM雷达的弹道目标精确测速方法[J]. 系统工程与电子技术, 2012, 34(2): 297-302. doi: 10.3969/j.issn.1001-506X.2012.02.15MA C, XU X J. Accurate velocity measurement method for ballistic objects using wideband LFM radar[J]. Systems Engineering and Electronics, 2012, 34(2): 297-302 (in Chinese). doi: 10.3969/j.issn.1001-506X.2012.02.15 [14] 刘明敬, 陈建平. 基于单个宽带回波提取目标距离和速度的方法[J]. 电光与控制, 2018, 25(12): 98. doi: 10.3969/j.issn.1671-637X.2018.12.021LIU M J, CHEN J P. An accurate range and velocity estimation method based on single wideband echo[J]. Electronics Optics & Control, 2018, 25(12): 98 (in Chinese). doi: 10.3969/j.issn.1671-637X.2018.12.021 [15] QI W, CUI Z J, YAO H S, et al. High precision phase-domain radial velocity estimation for wideband radar systems[J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 520-526. doi: 10.23919/JSEE.2020.000031 [16] ZHANG Q L, ZHANG Y S, SUN B, et al. Motion parameters estimation and HRRP reconstruction of maneuvering weak target for wideband radar based on SKT-ELVD[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2752-2763. doi: 10.1109/TAES.2022.3218486 [17] LIU Q H, GUO J P, LIANG Z N, et al. Motion parameter estimation and HRRP construction for high-speed weak targets based on modified GRFT for synthetic-wideband radar with PRF jittering[J]. IEEE Sensors Journal, 2021, 21(20): 23234-23244. doi: 10.1109/JSEN.2021.3108053 [18] 刘喆, 杨建宇. LFMCW雷达运动目标高精度检测方法[J]. 电子信息对抗技术, 2007, 22(1): 33-35. doi: 10.3969/j.issn.1674-2230.2007.01.009LIU Z, YANG J Y. A method of improving range and velocity precision of LFMCW radar moving target[J]. Electronic Information Warfare Technology, 2007, 22(1): 33-35 (in Chinese). doi: 10.3969/j.issn.1674-2230.2007.01.009 [19] 陈祝明, 丁义元, 向敬成. 采用Chirp-Z变换提高LFMCW雷达的测距离精度[J]. 信号处理, 2002, 18(2): 110-112,106. doi: 10.3969/j.issn.1003-0530.2002.02.004CHEN Z M, DING Y Y, XIANG J C. Improving range precision of LFMCW radar by chirp-Z transform[J]. Signal Processing, 2002, 18(2): 110-112,106 (in Chinese). doi: 10.3969/j.issn.1003-0530.2002.02.004 -


下载: