留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带LFMCW雷达运动目标测速误差分析与抑制方法

周炜 雷鹏 王俊 王剑

周炜,雷鹏,王俊,等. 宽带LFMCW雷达运动目标测速误差分析与抑制方法[J]. 北京航空航天大学学报,2025,51(12):4279-4285 doi: 10.13700/j.bh.1001-5965.2023.0689
引用本文: 周炜,雷鹏,王俊,等. 宽带LFMCW雷达运动目标测速误差分析与抑制方法[J]. 北京航空航天大学学报,2025,51(12):4279-4285 doi: 10.13700/j.bh.1001-5965.2023.0689
ZHOU W,LEI P,WANG J,et al. Analysis and suppression of radial velocity estimation error for moving targets in wideband LFMCW radar[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4279-4285 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0689
Citation: ZHOU W,LEI P,WANG J,et al. Analysis and suppression of radial velocity estimation error for moving targets in wideband LFMCW radar[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4279-4285 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0689

宽带LFMCW雷达运动目标测速误差分析与抑制方法

doi: 10.13700/j.bh.1001-5965.2023.0689
基金项目: 

航空科学基金(2018ZC51022)

详细信息
    通讯作者:

    E-mail: peng.lei@buaa.edu.cn

  • 中图分类号: TN951;TN958.95

Analysis and suppression of radial velocity estimation error for moving targets in wideband LFMCW radar

Funds: 

Aeronautical Science Foundation of China (2018ZC51022)

More Information
  • 摘要:

    宽带线性调频连续波(LFMCW)雷达可采用去斜处理实现距离高分辨,从而获取运动目标精细的距离变化信息。针对其运动目标多普勒速度谱存在干扰分量的问题,通过模型推导,分析了该现象产生原因及对目标速度估计的影响,提出了一种基于局部频谱细化的测速误差抑制方法;引入快时间Chirp-z变换对差频信号进行频谱细化,实现在计算量不增加的条件下降低测量误差,提升目标速度估计准确性。通过仿真对比实验验证了所提方法的性能。结果表明:所提方法可有效抑制离散域脉冲压缩引起的残差相位,对宽带LFMCW雷达的测速误差具有较好的抑制作用,对噪声具有更强的鲁棒性,且在计算量上远小于传统的快速傅里叶变换(FFT)方法。

     

  • 图 1  快时间离散与连续时基带回波信号相位对比

    Figure 1.  Comparison of phases of baseband echoes in discrete and continuous fast time

    图 2  慢时间-距离域回波

    Figure 2.  Slow time-range profile

    图 3  基于FFT的运动目标回波多普勒速度谱

    Figure 3.  Doppler velocity spectrum of radar echoes from a moving target using FFT

    图 4  基于本文方法的运动目标速度估计

    Figure 4.  Radial velocity estimation of moving target using the proposed method

    图 5  传统FFT方法与本文方法的速度估计均方根误差对比

    Figure 5.  Comparison of RMSE of radial velocity estimates using traditional FFT and the proposed method

    表  1  雷达系统仿真参数

    Table  1.   Simulation parameters of radar system

    参数 数值
    载波频率fc /GHz 10
    脉宽τp/μs 5
    带宽B/GHz 1
    脉冲重复间隔Tp/s 1/200
    采样率fs/MHz 100
    下载: 导出CSV

    表  2  传统FFT方法与本文方法在相同速度分辨率条件下的计算量对比

    Table  2.   Comparison of the computational cost between traditional FFT and the proposed method with the same velocity resolution

    方法 计算量
    传统FFT方法 8418696
    本文方法 309 066
    下载: 导出CSV
  • [1] 祁先锋. 空间碎片观测综述[J]. 中国航天, 2005(7): 24-26.

    QI X F. Review of space debris observation[J]. Aerospace China, 2005(7): 24-26 (in Chinese).
    [2] MUNTONI G. Crowded space: a review on radar measurements for space debris monitoring and tracking[J]. Applied Sciences, 2021, 11(4): 1364. doi: 10.3390/app11041364
    [3] PIERACCINI M, MICCINESI L. Ground-based radar interferometry: a bibliographic review[J]. Remote Sensing, 2019, 11(9): 1029. doi: 10.3390/rs11091029
    [4] ZHOU T H, YANG M M, JIANG K, et al. MMW radar-based technologies in autonomous driving: a review[J]. Sensors, 2020, 20(24): 7283. doi: 10.3390/s20247283
    [5] SUN S Q, PETROPULU A P, POOR H V. MIMO radar for advanced driver-assistance systems and autonomous driving: advantages and challenges[J]. IEEE Signal Processing Magazine, 2020, 37(4): 98-117. doi: 10.1109/MSP.2020.2978507
    [6] 王海, 徐岩松, 蔡英凤, 等. 基于多传感器融合的智能汽车多目标检测技术综述[J]. 汽车安全与节能学报, 2021, 12(4): 440-455. doi: 10.3969/j.issn.1674-8484.2021.04.002

    WANG H, XU Y S, CAI Y F, et al. Overview of intelligent vehicle multi-target detection technology based on multi-sensor fusion[J]. Journal of Automotive Safety and Energy, 2021, 12(4): 440-455 (in Chinese). doi: 10.3969/j.issn.1674-8484.2021.04.002
    [7] PATOLE S M, TORLAK M, WANG D, et al. Automotive radars: a review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22-35. doi: 10.1109/MSP.2016.2628914
    [8] 刘震宇, 陈惠明, 陆蔚, 等. 基于改进经验模态分解的雷达生命信号检测[J]. 仪器仪表学报, 2018, 39(12): 171-178.

    LIU Z Y, CHEN H M, LU W, et al. Radar vital signal detection based on improved complete ensemble empirical mode decomposition with adaptive noise[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 171-178 (in Chinese).
    [9] KEBE M, GADHAFI R, MOHAMMAD B, et al. Human vital signs detection methods and potential using radars: a review[J]. Sensors, 2020, 20(5): 1454. doi: 10.3390/s20051454
    [10] 黄富传. 基于DSP的毫米波雷达信号处理系统设计[J]. 中国集成电路, 2022, 31(11): 43-48. doi: 10.3969/j.issn.1681-5289.2022.11.008

    HUANG F C. Design of millimeter-wave radar signal processing system based on the DSP[J]. China Integrated Circuit, 2022, 31(11): 43-48 (in Chinese). doi: 10.3969/j.issn.1681-5289.2022.11.008
    [11] GAO X Y, ROY S, XING G B. MIMO-SAR: a hierarchical high-resolution imaging algorithm for mmWave FMCW radar in autonomous driving[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7322-7334. doi: 10.1109/TVT.2021.3092355
    [12] 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395-411.

    WANG J, ZHENG T, LEI P, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395-411 (in Chinese).
    [13] 马超, 许小剑. 基于宽带LFM雷达的弹道目标精确测速方法[J]. 系统工程与电子技术, 2012, 34(2): 297-302. doi: 10.3969/j.issn.1001-506X.2012.02.15

    MA C, XU X J. Accurate velocity measurement method for ballistic objects using wideband LFM radar[J]. Systems Engineering and Electronics, 2012, 34(2): 297-302 (in Chinese). doi: 10.3969/j.issn.1001-506X.2012.02.15
    [14] 刘明敬, 陈建平. 基于单个宽带回波提取目标距离和速度的方法[J]. 电光与控制, 2018, 25(12): 98. doi: 10.3969/j.issn.1671-637X.2018.12.021

    LIU M J, CHEN J P. An accurate range and velocity estimation method based on single wideband echo[J]. Electronics Optics & Control, 2018, 25(12): 98 (in Chinese). doi: 10.3969/j.issn.1671-637X.2018.12.021
    [15] QI W, CUI Z J, YAO H S, et al. High precision phase-domain radial velocity estimation for wideband radar systems[J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 520-526. doi: 10.23919/JSEE.2020.000031
    [16] ZHANG Q L, ZHANG Y S, SUN B, et al. Motion parameters estimation and HRRP reconstruction of maneuvering weak target for wideband radar based on SKT-ELVD[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2752-2763. doi: 10.1109/TAES.2022.3218486
    [17] LIU Q H, GUO J P, LIANG Z N, et al. Motion parameter estimation and HRRP construction for high-speed weak targets based on modified GRFT for synthetic-wideband radar with PRF jittering[J]. IEEE Sensors Journal, 2021, 21(20): 23234-23244. doi: 10.1109/JSEN.2021.3108053
    [18] 刘喆, 杨建宇. LFMCW雷达运动目标高精度检测方法[J]. 电子信息对抗技术, 2007, 22(1): 33-35. doi: 10.3969/j.issn.1674-2230.2007.01.009

    LIU Z, YANG J Y. A method of improving range and velocity precision of LFMCW radar moving target[J]. Electronic Information Warfare Technology, 2007, 22(1): 33-35 (in Chinese). doi: 10.3969/j.issn.1674-2230.2007.01.009
    [19] 陈祝明, 丁义元, 向敬成. 采用Chirp-Z变换提高LFMCW雷达的测距离精度[J]. 信号处理, 2002, 18(2): 110-112,106. doi: 10.3969/j.issn.1003-0530.2002.02.004

    CHEN Z M, DING Y Y, XIANG J C. Improving range precision of LFMCW radar by chirp-Z transform[J]. Signal Processing, 2002, 18(2): 110-112,106 (in Chinese). doi: 10.3969/j.issn.1003-0530.2002.02.004
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  127
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-25
  • 录用日期:  2023-12-11
  • 网络出版日期:  2023-12-26
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答