留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络增量非线性动态逆的高速靶机筋斗机动控制

翟友鸿 李春涛 苏子康 李雪兵

翟友鸿,李春涛,苏子康,等. 基于神经网络增量非线性动态逆的高速靶机筋斗机动控制[J]. 北京航空航天大学学报,2025,51(12):4286-4298 doi: 10.13700/j.bh.1001-5965.2023.0690
引用本文: 翟友鸿,李春涛,苏子康,等. 基于神经网络增量非线性动态逆的高速靶机筋斗机动控制[J]. 北京航空航天大学学报,2025,51(12):4286-4298 doi: 10.13700/j.bh.1001-5965.2023.0690
ZHAI Y H,LI C T,SU Z K,et al. High-speed target drone somersault maneuver control based on neural network incremental dynamic inversion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4286-4298 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0690
Citation: ZHAI Y H,LI C T,SU Z K,et al. High-speed target drone somersault maneuver control based on neural network incremental dynamic inversion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4286-4298 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0690

基于神经网络增量非线性动态逆的高速靶机筋斗机动控制

doi: 10.13700/j.bh.1001-5965.2023.0690
基金项目: 

国家自然科学基金(61903190); 中央高校基本科研业务费专项资金(NS2023016); 航空科学基金(2022Z023052003); 西北工业大学无人机特种技术重点实验室开放课题(2022-JCJQ-LB-071)

详细信息
    通讯作者:

    E-mail:lct13770925493@163.com

  • 中图分类号: V249

High-speed target drone somersault maneuver control based on neural network incremental dynamic inversion

Funds: 

National Natural Science Foundation of China (61903190); The Fundamental Research Funds for the Central Universities (NS2023016); Aeronautical Science Foundation of China (2022Z023052003); The Fund of the Key Laboratory of UAV in NWPU (2022-JCJQ-LB-071)

More Information
  • 摘要:

    针对受外界未知气流扰动下的高速靶机在筋斗机动过程中易激发出强烈且时变的非线性气动特性问题,提出一种考虑执行器输入约束的神经网络增量非线性动态逆(INDI)控制器,通过反向传播(BP)神经网络在线补偿无人机筋斗机动飞行过程中的各种不确定扰动因素。建立基于INDI的无人机筋斗机动飞行控制框架;考虑INDI控制律抗扰动能力的不足,在该控制框架下引入神经网络在线补偿模型误差,并根据李雅普诺夫定理对系统稳定性进行分析,保证系统半全局一致且最终有界跟踪;提出一种增量式控制分配方法,以跟踪误差最小原则设计目标函数,求解满足执行器输入速率及饱和约束的舵面偏转角增量。仿真结果表明:所设计的神经网络INDI控制器可保证高速靶机在模型失配及外界扰动情况下仍快速准确地完成筋斗机动指令。

     

  • 图 1  筋斗机动飞行示意

    Figure 1.  Schematic diagram of somersault maneuver flight

    图 2  单隐藏层神经网络结构

    Figure 2.  Stucture of single hidden layer neural network

    图 3  升降舵通道控制器结构

    Figure 3.  Structure of elevator channel controller

    图 4  筋斗机动飞行轨迹

    Figure 4.  Somersault maneuver flight trajectory

    图 5  筋斗机动关键状态量

    Figure 5.  Somersault maneuver critical state quantity

    图 6  俯仰角速度指令跟踪

    Figure 6.  Pitch angle speed command tracking

    图 7  迎角变化曲线

    Figure 7.  Curve of Angle of attack

    图 8  参数摄动下筋斗机动飞行轨迹

    Figure 8.  Somersault maneuver flight trajectory under parameter perturbation

    图 9  参数摄动下俯仰角变化

    Figure 9.  Pitch angle changes under parameter perturbation

    图 10  参数摄动下俯仰角速度指令跟踪

    Figure 10.  Pitch angle velocity command tracking under parameter perturbation

    图 11  参数摄动下俯仰角速度跟踪误差

    Figure 11.  Pitch angle velocity tracking error under parameter perturbation

    图 12  不同坐标系下顺风扰动变化曲线

    Figure 12.  Downwind disturbance change curves in different coordinate systems

    图 13  阵风扰动下指示空速变化曲线

    Figure 13.  Indicates the curve of airspeed change under gusts disturbance

    图 14  阵风扰动下筋斗机动飞行轨迹

    Figure 14.  Somersault maneuver flight trajectory under gusts disturbance

    图 15  阵风扰动下俯仰角速度指令跟踪

    Figure 15.  Pitch angle velocity command tracking under gusts disturbance

    图 16  阵风扰动下俯仰角速度跟踪误差

    Figure 16.  Pitch angle velocity tracking error under gusts disturbance

    图 17  神经网络补偿

    Figure 17.  Neural network compensation

    图 18  升降舵偏转情况

    Figure 18.  Elevator deflection situation

    表  1  迎角安全边界

    Table  1.   Angle of attack safety boundary

    $ \alpha _{\min }^0 $/(°) $ \alpha _{\min }^1 $/(°) $ \alpha _{\max }^0 $/(°) $ \alpha _{\max }^1 $/(°)
    0 2 8 10
    下载: 导出CSV

    表  2  神经网络参数设计

    Table  2.   Neural network parameter design

    参数 数值
    输入层偏置$ {b_v} $ 0.1
    隐藏层偏置$ {b_w} $ 0.1
    鲁棒调整项增益$ {K_{\text{r}}} $ 1
    权重矩阵最值$ {\bar {{Z}}} $ 1
    自适应速率因子$ {\gamma _w} $ 200
    自适应速率因子$ {\gamma _v} $ 90
    阻尼因子$ \lambda $ 0.5
    下载: 导出CSV
  • [1] 方斌, 许瑞, 高翔, 等. 靶机装备现状与发展需求[J]. 科技导报, 2020, 38(20): 50-56.

    FANG B, XU R, GAO X, et al. The current state and the development requirement of target drones[J]. Science & Technology Review, 2020, 38(20): 50-56(in Chinese).
    [2] 李雪兵, 李春涛, 坤娅. 鲁棒自适应控制的靶机蛇形机动控制律设计[J]. 电光与控制, 2018, 25(5): 56-63.

    LI X B, LI C T, KUN Y. Design of S maneuver control law for target drones based on robust adaptive control[J]. Electronics Optics & Control, 2018, 25(5): 56-63(in Chinese).
    [3] 依蔓, 宋磊. 藏在飞行表演中的“机动” 奥秘[J]. 知识就是力量, 2023(1): 44-45.

    YI M, SONG L. The mystery of “maneuver” hidden in air show[J]. Knowledge is Power, 2023(1): 44-45(in Chinese).
    [4] LOPEZ-SANCHEZ I, MORENO-VALENZUELA J. PID control of quadrotor UAVs: a survey[J]. Annual Reviews in Control, 2023, 56: 100900. doi: 10.1016/j.arcontrol.2023.100900
    [5] KIMATHI S, LANTOS B. Modelling and attitude control of an agile fixed wing UAV based on nonlinear dynamic inversion[J]. Periodica Polytechnica Electrical Engineering and Computer Science, 2022, 66(3): 227-235. doi: 10.3311/PPee.20287
    [6] XIAO L, ZHAO Z H, CAO D, et al. Composite nonlinear dynamic inversion control for quadrotor UAV with multi-source disturbances and actuator faults[C]//Proceedings of the 2022 41st Chinese Control Conference (CCC). Piscataway: IEEE Press, 2022: 386-391.
    [7] PFEIFLE O, FICHTER W. Cascaded incremental nonlinear dynamic inversion for three-dimensional spline-tracking with wind compensation[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(8): 1559-1571. doi: 10.2514/1.G005785
    [8] LI Y, LIU X X, LU P, et al. Angular acceleration estimation-based incremental nonlinear dynamic inversion for robust flight control[J]. Control Engineering Practice, 2021, 117: 104938. doi: 10.1016/j.conengprac.2021.104938
    [9] LU P, VAN KAMPEN E J, DE VISSER C, et al. Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2016, 57: 126-141. doi: 10.1016/j.conengprac.2016.09.010
    [10] LOMBAERTS T, KANESHIGE J, SCHUET S, et al. Dynamic inversion based full envelope flight control for an eVTOL vehicle using a unified framework[C]//Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1619.
    [11] YANG Z B, CHENG B, LV C X, et al. Fuzzy neural network dynamic inverse control strategy for quadrotor UAV based on atmospheric turbulence[J]. Applied Sciences, 2022, 12(23): 12232.
    [12] RAZMI H, AFSHINFAR S. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV[J]. Aerospace Science and Technology, 2019, 91: 12-27. doi: 10.1016/j.ast.2019.04.055
    [13] ZHENG F Y, XIONG B W, ZHANG J Y, et al. Improved neural network adaptive control for compound helicopter with uncertain cross-coupling in multimodal maneuver[J]. Nonlinear Dynamics, 2022, 108(4): 3505-3528. doi: 10.1007/s11071-022-07382-x
    [14] VAN OVEREEM S, WANG X R, VAN KAMPEN E J. Handling quality improvements for the flying-V aircraft using incremental nonlinear dynamic inversion[C]//Proceedings of the AIAA Scitech 2023 Forum. Reston: AIAA, 2023: 0105.
    [15] 张翾, 吴梅, 王宇航. 基于BP神经网络动态逆的纵列式直升机控制[J]. 飞行力学, 2021, 39(6): 36-41.

    ZHANG X, WU M, WANG Y H. Tandem helicopter control based on BP neural network dynamic inversion[J]. Flight Dynamics, 2021, 39(6): 36-41(in Chinese).
    [16] JOHNSON E, KANNAN S. Adaptive flight control for an autonomous unmanned helicopter[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002: 4439.
    [17] 王嵘冰, 徐红艳, 李波, 等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4): 31-35.

    WANG R B, XU H Y, LI B, et al. Research on method of determining hidden layer nodes in BP neural network[J]. Computer Technology and Development, 2018, 28(4): 31-35(in Chinese).
    [18] CAO S, YU H C. An adaptive control framework for the autonomous aerobatic maneuvers of fixed-wing unmanned aerial vehicle[J]. Drones, 2022, 6(11): 316. doi: 10.3390/drones6110316
    [19] RYSDYK R, CALISE A J. Robust nonlinear adaptive flight control for consistent handling qualities[J]. IEEE Transactions on Control Systems Technology, 2005, 13(6): 896-910. doi: 10.1109/TCST.2005.854345
    [20] MATAMOROS I, DE VISSER C C. Incremental nonlinear control allocation for a tailless aircraft with innovative control effectors[C]//Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018: 1116.
    [21] YANG C, WANG M Y, WANG W D, et al. An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm[J]. Energy, 2021, 219: 119595.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  93
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-25
  • 录用日期:  2024-01-03
  • 网络出版日期:  2024-01-12
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答