Design and implementation of a hardware-in-the-loop simulation system for interceptor composite control
-
摘要:
为验证拦截弹直接力和气动力复合控制系统的功能性,构建一套半实物仿真系统,并开展了仿真验证。搭建拦截弹六自由度动力学数学模型;设计包含直接力控制、气动力控制及控制策略的复合控制系统;通过对系统架构、硬件型号、软件平台、数据交互网络等进行研究,构建小型半实物仿真系统,并进行了半实物仿真置信度评估。在多种拦截场景下,比较全数字仿真和半实物仿真复合控制的控制效果,验证了拦截弹复合控制系统的正确性和有效性,证明了构建的半实物仿真系统具备较高的置信度,可以用于算法和模型的验证。
Abstract:In order to verify the functionality of the composite control system of the interceptor, a hardware-in-the-loop simulation system was constructed, and simulation verification was carried out. Firstly, a six-degree-of-freedom dynamic mathematical model of the interceptor. Then the interceptor composite control system was designed, including a direct force control subsystem, an aerodynamic control subsystem and a composite control strategy based on the interception process analysis. We created a tiny hardware-in-the-loop simulation system and examined its confidence by looking at the hardware model, software platform, data interaction network, and system design. Lastly, the control effects of hardware-in-the-loop simulation and full digital simulation were compared under various interception scenarios. The results confirm the accuracy and efficacy of the interceptor's composite control system and demonstrate the high degree of confidence in the hardware-in-the-loop simulation system, which can be used to validate models and algorithms.
-
表 1 数据流结构(实时仿真机至飞控计算机)
Table 1. Data flow structure (real time simulator to flight control computer)
字节序号 信号名称 字长/bit 备注 0 帧头1 8 0x55 1 帧头2 8 0xAA 2 数据长度 8 3~122 有效数据 30×32 123 校验和 8 [0x00,0xFF] 表 2 数据流结构(飞控计算机至实时仿真机)
Table 2. Data flow structure (flight control simulator to real time simulator)
字节序号 信号名称 字长/bit 备注 0 帧头1 8 0x55 1 帧头2 8 0xAA 2 数据长度 8 3~30 有效数据 7×32 31 校验和 8 [0x00, 0xFF] 表 3 主要硬件延迟分析
Table 3. Major hardware latency analysis
硬件设备 计算效率/ms 通信延迟/ms 总延迟/ms 实时仿真机 1 7 35 飞控计算机 2 5 三轴转台 0.2 电动舵机 20 表 4 2种仿真方式脱靶量对比
Table 4. Comparison of off-target volume between two simulation methods
拦截目标类型 FDS/m HIL/m 直线平方高速目标 0.86 1.21 侧向平飞高速目标 0.64 1.65 侧向机动高速目标 0.07 0.86 -
[1] 廖新华. 美利坚神箭 爱国者PAC-3反导拦截系统终极报告[J]. 国际展望, 2006(18): 28-35.LIAO X H. Final report of PAC-3 anti-missile interception system of American Shenjian Patriot[J]. World Outlook, 2006(18): 28-35(in Chinese). [2] 陈海建. 先进防空导弹关键技术分析及发展启示[J]. 现代防御技术, 2020, 48(4): 60-66.CHEN H J. Key technology analysis and development enlightenment of advanced air defense missile[J]. Modern Defence Technology, 2020, 48(4): 60-66(in Chinese). [3] NA H, LEE J I. Optimal arrangement of missile defense systems considering kill probability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 972-983. doi: 10.1109/TAES.2019.2923331 [4] 尹永鑫, 杨明, 王子才. 直接力与气动力复合控制拦截弹建模与控制[J]. 航天控制, 2006, 24(4): 18-22.YIN Y X, YANG M, WANG Z C. Modeling and control of the interception missile by combined control of lateral thrust and aerodynamic force[J]. Aerospace Control, 2006, 24(4): 18-22(in Chinese). [5] 程凤舟, 万自明, 陈士橹, 等. 防空导弹直接力与气动力复合控制系统设计[J]. 飞行力学, 2003, 21(2): 49-52.CHENG F Z, WAN Z M, CHEN S L, et al. Side jet and aerodynamics compound control system design of air defense missiles[J]. Flight Dynamics, 2003, 21(2): 49-52(in Chinese). [6] CHOI Y S, LEE H C, CHOI J W. Autopilot design for agile missile with aerodynamic fin and side thruster[C]//Proceedings of the SICE Annual Conference. Piscataway: IEEE Press, 2003: 1476-1481. [7] DURHAM W C. Constrained control allocation[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(4): 717-725. doi: 10.2514/3.21072 [8] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2000.QIAN X F, LIN R X, ZHAO Y N. Missile flight mechanics[M]. Beijing: Beijing Insititute of Technology Press, 2000(in Chinese). [9] 胡小平, 吴美平, 王海丽. 导弹飞行力学基础[M]. 长沙: 国防科技大学出版社, 2006.HU X P, WU M P, WANG H L. Fundamentals of missile flight mechanics[M]. Changsha: NUDT Publishing House, 2006. [10] 周荻, 邵春涛. 大气层内拦截弹直接侧向力/气动力混合控制系统设计[J]. 宇航学报, 2007, 28(5): 1205-1209.ZHOU D, SHAO C T. Hybrid control system design for an atmospheric interceptor controlled by lateral jet thrusters and aerodynamic surfaces[J]. Journal of Astronautics, 2007, 28(5): 1205-1209(in Chinese). [11] 刘君, 杨彦广. 带有横喷控制的导弹非定常流场数值模拟[J]. 空气动力学学报, 2005, 23(1): 25-28.LIU J, YANG Y G. Numerical simulation of lateral jet control induced by impulse rocket motor for a supersonic missile[J]. Acta Aerodynamica Sinica, 2005, 23(1): 25-28(in Chinese). [12] 李陟, 魏明英, 周荻, 等. 防空导弹直接侧向力/气动力复合控制技术[M]. 北京: 中国宇航出版社, 2012.LI Z, WEI M Y, ZHOU D, et al. Direct lateral force/aerodynamic compound control technology of air defense missile[M]. Beijing: China Aerospace Publishing House, 2012(in Chinese). [13] 邵春涛, 周荻. 大气层内拦截弹脉冲发动机消耗量离线计算[J]. 航天控制, 2009, 27(4): 57-61.SHAO C T, ZHOU D. Off-line calculation for consumed impulse thrusters of endoatmospheric interceptors[J]. Aerospace Control, 2009, 27(4): 57-61(in Chinese). [14] JOHANSEN T A, FOSSEN T I. Control allocation: a survey[J]. Automatica, 2013, 49(5): 1087-1103. doi: 10.1016/j.automatica.2013.01.035 [15] YANG P F, FANG Y W, CHAI D, et al. Fuzzy control strategy for hypersonic missile autopilot with blended aero-fin and lateral thrust[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2016, 230(1): 72-81. doi: 10.1177/0959651815611567 [16] 苏建刚, 付梦印. 激光末制导炮弹半实物仿真系统[J]. 系统仿真学报, 2006, 18(9): 2469-2472.SU J G, FU M Y. Design of hardware-in-the-loop simulation system for laser end-guided shell[J]. Journal of System Simulation, 2006, 18(9): 2469-2472(in Chinese). [17] 杨惠珍, 康凤举, 阎晋屯. 一种基于AHP的仿真可信度评估方法研究[J]. 系统仿真学报, 2006, 18(S2): 52-54.YANG H Z, KANG F J, YAN J T. A methodology of simulation credibility evaluation based on AHP[J]. Journal of System Simulation, 2006, 18(S2): 52-54(in Chinese). [18] 康凯. 导弹拦截末段制导律与复合控制研究[D]. 上海: 上海交通大学, 2011.KANG K. Research on terminal guidance law and compound control of missile interception[D]. Shanghai: Shanghai Jiao Tong University, 2011(in Chinese). [19] 雍恩米, 赵良玉, 赵暾. 萨德导弹拦截防御作战弹道设计与仿真分析[J]. 空天防御, 2020, 3(2): 65-71.YONG E M, ZHAO L Y, ZHAO T. Design and simulation of THAAD missile defence trajectory[J]. Air & Space Defense, 2020, 3(2): 65-71(in Chinese). [20] 赵季阳, 王忠庆. 防空导弹拦截目标的建模与仿真[J]. 自动化技术与应用, 2014, 33(4): 47-50.ZHAO J Y, WANG Z Q. Research on modeling and simulation of anti-aircraft missile interception for target[J]. Techniques of Automation and Applications, 2014, 33(4): 47-50(in Chinese). -


下载: