留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拦截弹复合控制半实物仿真系统设计与实现

邓晨 陈功 敖厚军 任斯远 杜文涛

邓晨,陈功,敖厚军,等. 拦截弹复合控制半实物仿真系统设计与实现[J]. 北京航空航天大学学报,2025,51(12):4178-4187 doi: 10.13700/j.bh.1001-5965.2023.0703
引用本文: 邓晨,陈功,敖厚军,等. 拦截弹复合控制半实物仿真系统设计与实现[J]. 北京航空航天大学学报,2025,51(12):4178-4187 doi: 10.13700/j.bh.1001-5965.2023.0703
DENG C,CHEN G,AO H J,et al. Design and implementation of a hardware-in-the-loop simulation system for interceptor composite control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4178-4187 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0703
Citation: DENG C,CHEN G,AO H J,et al. Design and implementation of a hardware-in-the-loop simulation system for interceptor composite control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4178-4187 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0703

拦截弹复合控制半实物仿真系统设计与实现

doi: 10.13700/j.bh.1001-5965.2023.0703
详细信息
    通讯作者:

    E-mail:253605656@qq.com

  • 中图分类号: V211.3;TB18

Design and implementation of a hardware-in-the-loop simulation system for interceptor composite control

More Information
  • 摘要:

    为验证拦截弹直接力和气动力复合控制系统的功能性,构建一套半实物仿真系统,并开展了仿真验证。搭建拦截弹六自由度动力学数学模型;设计包含直接力控制、气动力控制及控制策略的复合控制系统;通过对系统架构、硬件型号、软件平台、数据交互网络等进行研究,构建小型半实物仿真系统,并进行了半实物仿真置信度评估。在多种拦截场景下,比较全数字仿真和半实物仿真复合控制的控制效果,验证了拦截弹复合控制系统的正确性和有效性,证明了构建的半实物仿真系统具备较高的置信度,可以用于算法和模型的验证。

     

  • 图 1  控制流程框架

    Figure 1.  Control framework

    图 2  控制指令分配方式

    Figure 2.  Control command assignment method

    图 3  直接脉冲调制原理

    Figure 3.  Principle of direct pulse width modulation

    图 4  俯仰通道气动控制子系统

    Figure 4.  Pitch channel pneumatic control subsystem

    图 5  半实物仿真系统原理框架图

    Figure 5.  Principle block diagram of HIL simulation system

    图 6  实时仿真机接口

    Figure 6.  Real-time simulation machine interface

    图 7  飞控计算机及输出接口

    Figure 7.  Flight control computer and output interface

    图 8  立式小型三轴转台

    Figure 8.  Vertical small three-axis turntable

    图 9  电动舵机和力矩负载模拟器

    Figure 9.  Electric servo motor and torque load simulator

    图 10  半实物仿真系统软件平台流程

    Figure 10.  Software platform process of HIL simulation system

    图 11  半实物仿真系统通信网络架构

    Figure 11.  Communication network architecture of HIL simulation system

    图 12  串行调度逻辑

    Figure 12.  Serial scheduling logic

    图 13  并行调度逻辑

    Figure 13.  Parallel scheduling logic

    图 14  半实物仿真系统置信度评估体系

    Figure 14.  Confidence evaluation system for HIL simulation systems

    图 15  拦截直线平飞高速目标拦截弹拦截轨迹

    Figure 15.  Interceptor trajectory variation during interception high-speed straight-line flying target

    图 16  拦截直线平飞高速目标拦截弹姿态角变化

    Figure 16.  Interceptor attitude variation during interception high-speed straight-line flying target

    图 17  拦截侧向平飞高速目标拦截弹轨迹

    Figure 17.  Interceptor trajectory variation during interception of high-speed sideways flying target

    图 18  拦截侧向平飞高速目标拦截弹姿态角变化

    Figure 18.  Interceptor attitude variation during interception of high-speed sideways flying target

    图 19  拦截侧向机动高速目标拦截弹轨迹

    Figure 19.  Interceptor trajectory variation during interception of high-speed lateral motion flying target

    图 20  拦截侧向机动高速目标拦截弹姿态角变化

    Figure 20.  Interceptor attitude variation during interception of high-speed lateral motion flying target

    表  1  数据流结构(实时仿真机至飞控计算机)

    Table  1.   Data flow structure (real time simulator to flight control computer)

    字节序号 信号名称 字长/bit 备注
    0 帧头1 8 0x55
    1 帧头2 8 0xAA
    2 数据长度 8
    3~122 有效数据 30×32
    123 校验和 8 [0x00,0xFF]
    下载: 导出CSV

    表  2  数据流结构(飞控计算机至实时仿真机)

    Table  2.   Data flow structure (flight control simulator to real time simulator)

    字节序号 信号名称 字长/bit 备注
    0 帧头1 8 0x55
    1 帧头2 8 0xAA
    2 数据长度 8
    3~30 有效数据 7×32
    31 校验和 8 [0x00, 0xFF]
    下载: 导出CSV

    表  3  主要硬件延迟分析

    Table  3.   Major hardware latency analysis

    硬件设备计算效率/ms通信延迟/ms总延迟/ms
    实时仿真机1735
    飞控计算机25
    三轴转台0.2
    电动舵机20
    下载: 导出CSV

    表  4  2种仿真方式脱靶量对比

    Table  4.   Comparison of off-target volume between two simulation methods

    拦截目标类型FDS/mHIL/m
    直线平方高速目标0.861.21
    侧向平飞高速目标0.641.65
    侧向机动高速目标0.070.86
    下载: 导出CSV
  • [1] 廖新华. 美利坚神箭 爱国者PAC-3反导拦截系统终极报告[J]. 国际展望, 2006(18): 28-35.

    LIAO X H. Final report of PAC-3 anti-missile interception system of American Shenjian Patriot[J]. World Outlook, 2006(18): 28-35(in Chinese).
    [2] 陈海建. 先进防空导弹关键技术分析及发展启示[J]. 现代防御技术, 2020, 48(4): 60-66.

    CHEN H J. Key technology analysis and development enlightenment of advanced air defense missile[J]. Modern Defence Technology, 2020, 48(4): 60-66(in Chinese).
    [3] NA H, LEE J I. Optimal arrangement of missile defense systems considering kill probability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 972-983. doi: 10.1109/TAES.2019.2923331
    [4] 尹永鑫, 杨明, 王子才. 直接力与气动力复合控制拦截弹建模与控制[J]. 航天控制, 2006, 24(4): 18-22.

    YIN Y X, YANG M, WANG Z C. Modeling and control of the interception missile by combined control of lateral thrust and aerodynamic force[J]. Aerospace Control, 2006, 24(4): 18-22(in Chinese).
    [5] 程凤舟, 万自明, 陈士橹, 等. 防空导弹直接力与气动力复合控制系统设计[J]. 飞行力学, 2003, 21(2): 49-52.

    CHENG F Z, WAN Z M, CHEN S L, et al. Side jet and aerodynamics compound control system design of air defense missiles[J]. Flight Dynamics, 2003, 21(2): 49-52(in Chinese).
    [6] CHOI Y S, LEE H C, CHOI J W. Autopilot design for agile missile with aerodynamic fin and side thruster[C]//Proceedings of the SICE Annual Conference. Piscataway: IEEE Press, 2003: 1476-1481.
    [7] DURHAM W C. Constrained control allocation[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(4): 717-725. doi: 10.2514/3.21072
    [8] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2000.

    QIAN X F, LIN R X, ZHAO Y N. Missile flight mechanics[M]. Beijing: Beijing Insititute of Technology Press, 2000(in Chinese).
    [9] 胡小平, 吴美平, 王海丽. 导弹飞行力学基础[M]. 长沙: 国防科技大学出版社, 2006.

    HU X P, WU M P, WANG H L. Fundamentals of missile flight mechanics[M]. Changsha: NUDT Publishing House, 2006.
    [10] 周荻, 邵春涛. 大气层内拦截弹直接侧向力/气动力混合控制系统设计[J]. 宇航学报, 2007, 28(5): 1205-1209.

    ZHOU D, SHAO C T. Hybrid control system design for an atmospheric interceptor controlled by lateral jet thrusters and aerodynamic surfaces[J]. Journal of Astronautics, 2007, 28(5): 1205-1209(in Chinese).
    [11] 刘君, 杨彦广. 带有横喷控制的导弹非定常流场数值模拟[J]. 空气动力学学报, 2005, 23(1): 25-28.

    LIU J, YANG Y G. Numerical simulation of lateral jet control induced by impulse rocket motor for a supersonic missile[J]. Acta Aerodynamica Sinica, 2005, 23(1): 25-28(in Chinese).
    [12] 李陟, 魏明英, 周荻, 等. 防空导弹直接侧向力/气动力复合控制技术[M]. 北京: 中国宇航出版社, 2012.

    LI Z, WEI M Y, ZHOU D, et al. Direct lateral force/aerodynamic compound control technology of air defense missile[M]. Beijing: China Aerospace Publishing House, 2012(in Chinese).
    [13] 邵春涛, 周荻. 大气层内拦截弹脉冲发动机消耗量离线计算[J]. 航天控制, 2009, 27(4): 57-61.

    SHAO C T, ZHOU D. Off-line calculation for consumed impulse thrusters of endoatmospheric interceptors[J]. Aerospace Control, 2009, 27(4): 57-61(in Chinese).
    [14] JOHANSEN T A, FOSSEN T I. Control allocation: a survey[J]. Automatica, 2013, 49(5): 1087-1103. doi: 10.1016/j.automatica.2013.01.035
    [15] YANG P F, FANG Y W, CHAI D, et al. Fuzzy control strategy for hypersonic missile autopilot with blended aero-fin and lateral thrust[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2016, 230(1): 72-81. doi: 10.1177/0959651815611567
    [16] 苏建刚, 付梦印. 激光末制导炮弹半实物仿真系统[J]. 系统仿真学报, 2006, 18(9): 2469-2472.

    SU J G, FU M Y. Design of hardware-in-the-loop simulation system for laser end-guided shell[J]. Journal of System Simulation, 2006, 18(9): 2469-2472(in Chinese).
    [17] 杨惠珍, 康凤举, 阎晋屯. 一种基于AHP的仿真可信度评估方法研究[J]. 系统仿真学报, 2006, 18(S2): 52-54.

    YANG H Z, KANG F J, YAN J T. A methodology of simulation credibility evaluation based on AHP[J]. Journal of System Simulation, 2006, 18(S2): 52-54(in Chinese).
    [18] 康凯. 导弹拦截末段制导律与复合控制研究[D]. 上海: 上海交通大学, 2011.

    KANG K. Research on terminal guidance law and compound control of missile interception[D]. Shanghai: Shanghai Jiao Tong University, 2011(in Chinese).
    [19] 雍恩米, 赵良玉, 赵暾. 萨德导弹拦截防御作战弹道设计与仿真分析[J]. 空天防御, 2020, 3(2): 65-71.

    YONG E M, ZHAO L Y, ZHAO T. Design and simulation of THAAD missile defence trajectory[J]. Air & Space Defense, 2020, 3(2): 65-71(in Chinese).
    [20] 赵季阳, 王忠庆. 防空导弹拦截目标的建模与仿真[J]. 自动化技术与应用, 2014, 33(4): 47-50.

    ZHAO J Y, WANG Z Q. Research on modeling and simulation of anti-aircraft missile interception for target[J]. Techniques of Automation and Applications, 2014, 33(4): 47-50(in Chinese).
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  125
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 录用日期:  2023-12-15
  • 网络出版日期:  2023-12-28
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答