留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向隐身目标跟踪的雷达组网系统资源优化分配算法

黄洁瑜 张浩为 谢军伟 李正杰 齐铖 丁梓航

黄洁瑜,张浩为,谢军伟,等. 一种面向隐身目标跟踪的雷达组网系统资源优化分配算法[J]. 北京航空航天大学学报,2026,52(2):470-481 doi: 10.13700/j.bh.1001-5965.2023.0782
引用本文: 黄洁瑜,张浩为,谢军伟,等. 一种面向隐身目标跟踪的雷达组网系统资源优化分配算法[J]. 北京航空航天大学学报,2026,52(2):470-481 doi: 10.13700/j.bh.1001-5965.2023.0782
HUANG J Y,ZHANG H W,XIE J W,et al. A resource optimization allocation algorithm for radar networked system for stealth target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):470-481 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0782
Citation: HUANG J Y,ZHANG H W,XIE J W,et al. A resource optimization allocation algorithm for radar networked system for stealth target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):470-481 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0782

一种面向隐身目标跟踪的雷达组网系统资源优化分配算法

doi: 10.13700/j.bh.1001-5965.2023.0782
基金项目: 

国家自然科学基金(62001506)

详细信息
    通讯作者:

    E-mail:zhw_xhzf@163.com

  • 中图分类号: TM972

A resource optimization allocation algorithm for radar networked system for stealth target tracking

Funds: 

National Natural Science Foundation of China (62001506)

More Information
  • 摘要:

    传统集中式多输入多输出(MIMO)雷达组网探测过程中,通常利用雷达散射截面(RCS)统计模型进行资源优化。但隐身目标RCS具有动态起伏特性,这会导致目标跟踪精度下降甚至是目标丢失。针对此问题,提出一种面向隐身目标跟踪的集中式MIMO雷达组网系统波束及功率资源优化分配算法。利用协方差交叉(CI)融合滤波算法对目标状态进行估计,推导CI融合准则下的预测贝叶斯克拉美罗下界(BCRLB);基于目标RCS与雷达预测观测角度相关的特性对目标RCS进行预测,并以各个目标BCRLB加权和为目标函数,建立RCS预测模型下的波束及功率优化算法;设计一种基于贡献度的快速求解算法对模型进行求解。仿真结果表明:在隐身目标RCS动态起伏场景下,相比于RCS统计模型策略,所提算法能有效利用目标RCS信息实现更优的资源分配,进而提升隐身目标跟踪精度。

     

  • 图 1  雷达观测角示意图

    Figure 1.  Schematic diagram of radar observation angle

    图 2  目标RCS预测过程示意图

    Figure 2.  Schematic diagram of RCS prediction process

    图 3  集中式MIMO雷达组网系统闭环认知跟踪示意图

    Figure 3.  Schematic diagram of closed-loop cognitive tracking for collocated MIMO radar networked system

    图 4  目标RCS数据库

    Figure 4.  Database of target RCS

    图 5  单目标场景下雷达和目标空间分布

    Figure 5.  Spatial position between radar and target in single-target scenarios

    图 6  单目标场景下目标RCS 变化

    Figure 6.  Target RCS changing in single-target scenarios

    图 7  目标RMSE和BCRLB变化

    Figure 7.  Chart of changes in target RMSE and BCRLB

    图 8  节点选择结果

    Figure 8.  Node selection results

    图 9  多目标场景下雷达和目标空间分布

    Figure 9.  Spatial position between radar and target in multi-target scenarios

    图 10  多目标场景下目标RCS 变化图

    Figure 10.  Target RCS changing map in multi-target scenarios

    图 11  BCRLB 权重和对比

    Figure 11.  Comparison of weighted BCRLB sum

    图 12  RCS统计模型资源分配结果

    Figure 12.  Allocation results of RCS statistical model

    图 13  RCS预测模型资源分配结果

    Figure 13.  Allocation results of RCS predicted model

    图 14  本文资源优化分配算法运行时间

    Figure 14.  Runtime of the proposed resource optimization allocation algorithm

    表  1  雷达发射参数

    Table  1.   Transmitting parameters of radar

    信号有效
    带宽$\beta $/MHz
    信号有效
    时宽T/ms
    波长$\lambda $/
    m
    最小发射
    功率${P_{\max }}$
    最大发射
    功率${P_{\min }}$
    总发射
    功率${P_{{\text{total}}}}$
    1 1 0.3 0.2${P_{{\text{total}}}}$ 0.8${P_{{\text{total}}}}$ Ptotal
    下载: 导出CSV

    表  2  目标初始运动参数

    Table  2.   Parameters of targets motion at initial time

    目标 初始位置/km 初始速度/(m·s−1)
    1 (20, 40) (100, 30)
    2 (−120, 120) (100, 140)
    3 (−120, −120) (−100, 140)
    下载: 导出CSV
  • [1] 时晨光, 董璟, 周建江, 等. 飞行器射频隐身技术研究综述[J]. 系统工程与电子技术, 2021, 43(6): 1452-1467.

    SHI C G, DONG J, ZHOU J J, et al. Overview of aircraft radio frequency stealth technology[J]. Systems Engineering and Electronics, 2021, 43(6): 1452-1467(in Chinese).
    [2] 王伟伦, 王仲雷. 预警雷达反隐身技术顶层设计[J]. 西北工业大学学报, 2014, 32(6): 956-961.

    WANG W L, WANG Z L. Top down plan on anti-stealth techniques of fixed early warning radar[J]. Journal of Northwestern Polytechnical University, 2014, 32(6): 956-961(in Chinese).
    [3] 师俊朋, 胡国平, 李涛. 基于改进灰色关联算法的雷达反隐身能力评估[J]. 哈尔滨工业大学学报, 2015, 47(3): 116-121.

    SHI J P, HU G P, LI T. Evaluation of anti-stealth ability of radar on improved grey correlation algorithm[J]. Journal of Harbin Institute of Technology, 2015, 47(3): 116-121(in Chinese).
    [4] 师俊朋, 胡国平, 王馨. 基于证据融合的雷达反隐身性能评估方法[J]. 北京航空航天大学学报, 2015, 41(6): 1095-1101.

    SHI J P, HU G P, WANG X. Evaluation method for radar anti-stealth performance based on evidence fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1095-1101(in Chinese).
    [5] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013: 14-15.

    SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013: 14-15(in Chinese).
    [6] NATHANSON F E. Radar design principles[M]. New York: Mcgraw-Hill Book Company, 1969: 148-152.
    [7] 时晨光, 王奕杰, 代向荣, 等. 面向目标跟踪的机载组网雷达辐射参数与航迹规划联合优化算法[J]. 雷达学报, 2022, 11(5): 778-793.

    SHI C G, WANG Y J, DAI X R, et al. Joint transmit resources and trajectory planning for target tracking in airborne radar networks[J]. Journal of Radars, 2022, 11(5): 778-793(in Chinese).
    [8] 袁野. 面向认知跟踪的无线分布式雷达资源闭环调度方法研究[D]. 成都: 电子科技大学, 2022.

    YUAN Y. Research on closed-form resource allocation for wireless distributed radars with cognitive tracking[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
    [9] GODRICH H, PETROPULU A P, POOR H V. Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 247-260. doi: 10.1109/TSP.2011.2170170
    [10] 严俊坤, 刘宏伟, 戴奉周, 等. 基于非线性机会约束规划的多基雷达系统稳健功率分配算法[J]. 电子与信息学报, 2014, 36(3): 509-515.

    YAN J K, LIU H W, DAI F Z, et al. Nonlinear chance constrained programming based robust power allocation algorithm for multistatic radar systems[J]. Journal of Electronics & Information Technology, 2014, 36(3): 509-515(in Chinese).
    [11] XIE M C, YI W, KIRUBARAJAN T, et al. Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 729-743. doi: 10.1109/TSP.2017.2777394
    [12] YI W, YUAN Y, HOSEINNEZHAD R, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602-1617. doi: 10.1109/TSP.2020.2976587
    [13] YUAN Y, YI W, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2020, 69: 443-458.
    [14] SHI C G, WANG Y J, SALOUS S, et al. Joint transmit resource management and waveform selection strategy for target tracking in distributed phased array radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2762-2778. doi: 10.1109/TAES.2021.3138869
    [15] DAI J H, YAN J K, LV J D, et al. Composed resource optimization for multitarget tracking in active and passive radar network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5119215.
    [16] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 2 版. 北京: 电子工业出版社, 2009.

    HUANG P K, YIN H C, XU X J. Radar target features[M]. 2rd. Beijing: Electronics Industry Press, 2009.
    [17] 袁俊超, 张小宽, 杜涛, 等. 战术机动对隐身飞机检测概率的影响研究[J]. 微波学报, 2017, 33(2): 83-88.

    YUAN J C, ZHANG X K, DU T, et al. Study about the effect of tactical maneuver on stealth aircraft detection[J]. Journal of Microwaves, 2017, 33(2): 83-88(in Chinese).
    [18] INASAWA Y, SAITO M, NAITO I, et al. Numerical calculation and experimental validation of RCS analysis for radome-enclosed scatterer by using PMCHWT-formulation[C]//Proceedings of the URSI General Assembly and Scientific Symposium. Piscataway: IEEE Press, 2011: 1-4.
    [19] YAN J K, PU W Q, ZHOU S H, et al. Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks[J]. IEEE Transactions on Signal Processing, 2020, 68: 4055-4068. doi: 10.1109/TSP.2020.3007313
    [20] YUAN Y, YI W, KIRUBARAJAN T, et al. Scaled accuracy based power allocation for multi-target tracking with colocated MIMO radars[J]. Signal Processing, 2019, 158: 227-240. doi: 10.1016/j.sigpro.2019.01.014
    [21] LI J, STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106-114. doi: 10.1109/MSP.2007.904812
    [22] 齐铖, 谢军伟, 张浩为, 等. 基于目标检测的混合分布式PA-MIMO雷达系统阵元优化部署[J]. 雷达学报, 2023, 12(3): 576-589.

    QI C, XIE J W, ZHANG H W, et al. Hybrid distributed PA-MIMO radar system model for improved target detection performance[J]. Journal of Radars, 2023, 12(3): 576-589(in Chinese).
    [23] LI Z J, XIE J W, ZHANG H W, et al. Joint target assignment and power allocation in the netted C-MIMO radar when tracking multi-targets in the presence of self-defense blanket jamming[J]. Defence Technology, 2023, 24: 414-427. doi: 10.1016/j.dt.2023.03.005
    [24] YAN J K, JIU B, LIU H W, et al. Prior knowledge-based simultaneous multibeam power allocation algorithm for cognitive multiple targets tracking in clutter[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 512-527. doi: 10.1109/TSP.2014.2371774
    [25] 蒋春启, 郑娜娥, 左宗, 等. 突出重点目标跟踪的分布式MIMO雷达阵元选取[J]. 系统工程与电子技术, 2021, 43(10): 2860-2868.

    JIANG C Q, ZHENG N E, ZUO Z, et al. Antenna selection of distributed MIMO radar on target tracking with key target highlighted[J]. Systems Engineering and Electronics, 2021, 43(10): 2860-2868(in Chinese).
    [26] XIE M C, YI W, KONG L J, et al. Receive-beam resource allocation for multiple target tracking with distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2421-2436. doi: 10.1109/TAES.2018.2818579
    [27] NGUYEN N H, DOGANCAY K, DAVIS L M. Adaptive waveform selection for multistatic target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 688-701. doi: 10.1109/TAES.2014.130723
    [28] 段毅, 谭贤四, 曲智国, 等. 基于临空目标RCS预测的相控阵雷达资源自适应分配方法[J]. 电子与信息学报, 2022, 44(12): 4151-4158.

    DUAN Y, TAN X S, QU Z G, et al. Adaptive resource management method for phased array radar based on RCS prediction of hypersonic gliding vehicle[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4151-4158(in Chinese).
    [29] NIEHSEN W. Information fusion based on fast covariance intersection filtering[C]//Proceedings of the 5th International Conference on Information Fusion. Piscataway: IEEE Press, 2002: 901-904.
    [30] YAN J K, LIU H W, JIU B, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110-3122. doi: 10.1109/TSP.2015.2417504
    [31] YAN J K, LIU H W, PU W Q, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417-6427. doi: 10.1109/TSP.2016.2607147
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1163
  • HTML全文浏览量:  411
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 录用日期:  2024-01-24
  • 网络出版日期:  2024-02-26
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答