留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拦截捕获区的“多对多”能量最优目标分配方法

李昊键 黎克波 梁彦刚

李昊键,黎克波,梁彦刚. 基于拦截捕获区的“多对多”能量最优目标分配方法[J]. 北京航空航天大学学报,2026,52(2):490-497 doi: 10.13700/j.bh.1001-5965.2024.0330
引用本文: 李昊键,黎克波,梁彦刚. 基于拦截捕获区的“多对多”能量最优目标分配方法[J]. 北京航空航天大学学报,2026,52(2):490-497 doi: 10.13700/j.bh.1001-5965.2024.0330
LI H J,LI K B,LIANG Y G. Multi-to-multi energy optimal task allocation method based on interception capture region[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):490-497 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0330
Citation: LI H J,LI K B,LIANG Y G. Multi-to-multi energy optimal task allocation method based on interception capture region[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):490-497 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0330

基于拦截捕获区的“多对多”能量最优目标分配方法

doi: 10.13700/j.bh.1001-5965.2024.0330
基金项目: 

国家自然科学基金(12472359,U2441205,62103435)

详细信息
    通讯作者:

    E-mail:likeboreal@nudt.edu.cn

  • 中图分类号: V448.2;TJ765.3

Multi-to-multi energy optimal task allocation method based on interception capture region

Funds: 

National Natural Science Foundation of China (12472359,U2441205,62103435)

More Information
  • 摘要:

    针对多拦截器与多目标交战(MME)场景的任务分配问题,从制导的角度入手,提出基于拦截捕获区的“多对多”能量最优目标分配方法。分析三维现实真比例导引(3D-RTPN)拦截任意机动目标的捕获区与最优制导能量消耗;以多拦截器成功拦截机动目标与整体能量消耗最低为优化目标,构建目标分配代价矩阵;基于适应性匈牙利算法(AHA)实现多拦截器的多目标分配(MMA)。通过数值仿真算例,验证了所提方法的有效性。

     

  • 图 1  RTPN三维捕获区

    Figure 1.  Three-dimensional capture region of RTPN

    图 2  RTPN二维捕获区

    Figure 2.  Two-dimensional capture region of RTPN

    图 3  拦截仿真结果

    Figure 3.  Simulation results of interception

    表  1  仿真主要参数

    Table  1.   Main parameters of simulation

    参数 数值
    弹头释放位置rmc/km [10, 10, 10]T
    子拦截器1位矢rm1/km rmc+[1, 0, 0]T
    子拦截器2位矢rm2/km rmc+[0, 1, 0]T
    子拦截器3位矢rm3/km rmc+[0, 0, 1]T
    子拦截器4位矢rm4/km rmc+[−1, 0, 0]T
    子拦截器5位矢rm5/km rmc+[0, −1, 0]T
    子拦截器6位矢rm6/km rmc+[0, 0, −1]T
    目标1初始时刻位矢rt1/km [60, 30, 60]T
    目标2初始时刻位矢rt2/km [50, 32, 62]T
    目标3初始时刻位矢rt3/km [62, 28, 50]T
    弹头释放时刻速度大小Vm/(m·s−1) 1800
    目标1速度大小Vt1/(m·s−1) 2 000
    目标2速度大小Vt2/(m·s−1) 2 000
    目标3速度大小Vt3/(m·s−1) 2 000
    弹头释放时刻速度倾角θmc/(°) 45
    目标1初始时刻速度倾角θt1/(°) 0
    目标2初始时刻速度倾角θt2/(°) 0
    目标3初始时刻速度倾角θt3/(°) 0
    弹头释放时刻速度方位角ψmc/(°) −45
    目标1初始时刻速度方位角ψt1/(°) 135
    目标2初始时刻速度方位角ψt2/(°) 130
    目标3初始时刻速度方位角ψt3/(°) 140
    弹头释放时刻速度矢量vmc/(m·s−1) Vm·[cosθmccosψmc, sinθmc,
    −cosθmcsinψmc]
    子拦截器1速度矢量vm1/(m·s−1) vmc+[100, 0, 0]T
    子拦截器2速度矢量vm2/(m·s−1) vmc+[0, 100, 0]T
    子拦截器3速度矢量vm3/(m·s−1) vmc+[0, 0, 100]T
    子拦截器4速度矢量vm4/(m·s−1) vmc+[−100, 0, 0]T
    子拦截器5速度矢量vm5/(m·s−1) vmc+[0, −100, 0]T
    子拦截器6速度矢量vm6/(m·s−1) vmc+[0, 0, −100]T
    下载: 导出CSV

    表  2  不同算法分配结果

    Table  2.   Allocation results of different algorithms

    算法 目标序号
    拦截器1 拦截器2 拦截器3 拦截器4 拦截器5 拦截器6
    AHA 3 1 2 2 1 3
    GA+SQP
    (无整数约束)
    3 1 2 2 1 3
    GA(整数约束) 2 1 1 3 2 3
    下载: 导出CSV

    表  3  不同算法耗时与寻优结果

    Table  3.   Time consumption and optimization results of different algorithms

    算法 求解耗时/s 代价矩阵+
    算法求解耗时/s
    速度增量
    寻优结果/(m·s−1
    AHA 0.0005 0.0077 9465.9
    GA+SQP
    (无整数约束)
    9.3168 9.3152 9465.9
    GA(整数约束) 64.4299 64.4328 10150.9
    下载: 导出CSV
  • [1] 谢愈, 刘鲁华, 汤国建, 等. 多拦截器总体拦截方案设计与分析[J]. 北京航空航天大学学报, 2012, 38(3): 303-308.

    XIE Y, LIU L H, TANG G J, et al. Design and analysis of interception project for multiple kill vehicle interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(3): 303-308(in Chinese).
    [2] CHEN B, YAN B, WANG Y M. Research on multiple kill vehicles firepower distribution strategy based on adjust genetic algorithm[C]//Proceedings of the 25th Chinese Control and Decision Conference. Piscataway: IEEE Press, 2013: 3582-3586.
    [3] YANG B Q, LI X L, MA J. Target assignment based on hybrid model predictive control[J]. Applied Mechanics and Materials, 2014, 556-562: 3622-3626.
    [4] 顾佼佼, 赵建军, 颜骥, 等. 基于MODPSO-GSA的协同空战武器目标分配[J]. 北京航空航天大学学报, 2015, 41(2): 252-258.

    GU J J, ZHAO J J, YAN J, et al. Cooperative weapon-target assignment based on multi-objective discrete particle swarm optimization-gravitational search algorithm in air combat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 252-258(in Chinese).
    [5] MERKULOV V I, PLYASHECHNIK A S. Simplified target assignment problem for group engagement of aircraft[J]. Automation and Remote Control, 2019, 80(3): 490-501. doi: 10.1134/S0005117919030081
    [6] KIM J, LEE W C, CHO D H, et al. Decentralized weapon target assignment against high-speed enemy missiles[C]//Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
    [7] 张进, 郭浩, 陈统. 基于可适应匈牙利算法的武器-目标分配问题[J]. 兵工学报, 2021, 42(6): 1339-1344.

    ZHANG J, GUO H, CHEN T. Weapon-target assignment based on adaptable Hungarian algorithm[J]. Acta Armamentarii, 2021, 42(6): 1339-1344(in Chinese).
    [8] GUO J G, HU G J, GUO Z Y, et al. Evaluation model, intelligent assignment, and cooperative interception in multimissile and multitarget engagement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3104-3115. doi: 10.1109/TAES.2022.3144111
    [9] GENG Z, HUANG Y Y, ZHANG H, et al. Improved sparrow search algorithm applied to multi-stage weapon target assignment[C]//Proceedings of the International Conference on Cyber-Physical Social Intelligence. Piscataway: IEEE Press, 2022: 98-103.
    [10] 邹子缘, 陈琪锋. 基于决策树搜索的空间飞行器集群对抗目标分配方法[J]. 航空学报, 2022, 43(S1): 726910.

    ZOU Z Y, CHEN Q F. Target assignment method of spacecraft cluster confrontation based on decision tree search[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726910(in Chinese).
    [11] 高树一, 林德福, 郑多, 等. 针对集群攻击的飞行器智能协同拦截策略[J]. 航空学报, 2023, 44(18): 328301.

    GAO S Y, LIN D F, ZHENG D, et al. Intelligent cooperative interception strategy of aircraft against cluster attack[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328301(in Chinese).
    [12] 苏山, 马泽远, 张立, 等. 改进粒子群优化多拦截器目标分配方法研究[J]. 弹箭与制导学报, 2024, 44(1): 41-48.

    SU S, MA Z Y, ZHANG L, et al. Research on multi-interceptor target assignment method using improved particle swarm optimization[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2024, 44(1): 41-48(in Chinese).
    [13] LI K B, ZHANG T T, CHEN L. Ideal proportional navigation for exoatmospheric interception[J]. Chinese Journal of Aeronautics, 2013, 26(4): 976-985. doi: 10.1016/j.cja.2013.06.007
    [14] LI K B, SU W S, CHEN L. Performance analysis of three-dimensional differential geometric guidance law against low-speed maneuvering targets[J]. Astrodynamics, 2018, 2(3): 233-247. doi: 10.1007/s42064-018-0023-z
    [15] 白志会, 黎克波, 苏文山, 等. 现实真比例导引拦截任意机动目标捕获区域[J]. 航空学报, 2020, 41(8): 323947.

    BAI Z H, LI K B, SU W S, et al. Capture region of RTPN guidance law against arbitrarily maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323947(in Chinese).
    [16] LI K B, BAI Z H, HYO-SANG S, et al. Capturability of 3D RTPN guidance law against true-arbitrarily maneuvering target with maneuverability limitation[J]. Chinese Journal of Aeronautics, 2022, 35(7): 75-90. doi: 10.1016/j.cja.2021.10.004
    [17] YANG C D, YANG C C. Analytical solution of three-dimensional realistic true proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 569-577. doi: 10.2514/3.21659
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  32
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 录用日期:  2024-08-17
  • 网络出版日期:  2025-04-02
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答