Multi-to-multi energy optimal task allocation method based on interception capture region
-
摘要:
针对多拦截器与多目标交战(MME)场景的任务分配问题,从制导的角度入手,提出基于拦截捕获区的“多对多”能量最优目标分配方法。分析三维现实真比例导引(3D-RTPN)拦截任意机动目标的捕获区与最优制导能量消耗;以多拦截器成功拦截机动目标与整体能量消耗最低为优化目标,构建目标分配代价矩阵;基于适应性匈牙利算法(AHA)实现多拦截器的多目标分配(MMA)。通过数值仿真算例,验证了所提方法的有效性。
Abstract:Aiming at the assignment problem of multimissile and multitarget engagement (MME) scenario, this paper proposes a multi-to-multi energy optimal task allocation method based on interception capture region from the perspective of guidance. The characteristics of the capture region and optimal energy cost in the scenario of three-dimensional realistic true proportional navigation (3D-RTPN) intercepting arbitrary maneuvering targets are analyzed. The weight matrix is then built with the intention of achieving both the lowest total energy consumption and successful interception. In order to achieve multimissile and multitarget assignment (MMA), the adaptable Hungarian algorithm (AHA) is used. Numerical simulation is used to confirm the MMA strategy's efficacy. The effectiveness of the proposed method is verified by numerical simulation.
-
表 1 仿真主要参数
Table 1. Main parameters of simulation
参数 数值 弹头释放位置rmc/km [10, 10, 10]T 子拦截器1位矢rm1/km rmc+[1, 0, 0]T 子拦截器2位矢rm2/km rmc+[0, 1, 0]T 子拦截器3位矢rm3/km rmc+[0, 0, 1]T 子拦截器4位矢rm4/km rmc+[−1, 0, 0]T 子拦截器5位矢rm5/km rmc+[0, −1, 0]T 子拦截器6位矢rm6/km rmc+[0, 0, −1]T 目标1初始时刻位矢rt1/km [60, 30, 60]T 目标2初始时刻位矢rt2/km [50, 32, 62]T 目标3初始时刻位矢rt3/km [62, 28, 50]T 弹头释放时刻速度大小Vm/(m·s−1) 1800 目标1速度大小Vt1/(m·s−1) 2 000 目标2速度大小Vt2/(m·s−1) 2 000 目标3速度大小Vt3/(m·s−1) 2 000 弹头释放时刻速度倾角θmc/(°) 45 目标1初始时刻速度倾角θt1/(°) 0 目标2初始时刻速度倾角θt2/(°) 0 目标3初始时刻速度倾角θt3/(°) 0 弹头释放时刻速度方位角ψmc/(°) −45 目标1初始时刻速度方位角ψt1/(°) 135 目标2初始时刻速度方位角ψt2/(°) 130 目标3初始时刻速度方位角ψt3/(°) 140 弹头释放时刻速度矢量vmc/(m·s−1) Vm·[cosθmccosψmc, sinθmc,
−cosθmcsinψmc]子拦截器1速度矢量vm1/(m·s−1) vmc+[100, 0, 0]T 子拦截器2速度矢量vm2/(m·s−1) vmc+[0, 100, 0]T 子拦截器3速度矢量vm3/(m·s−1) vmc+[0, 0, 100]T 子拦截器4速度矢量vm4/(m·s−1) vmc+[−100, 0, 0]T 子拦截器5速度矢量vm5/(m·s−1) vmc+[0, −100, 0]T 子拦截器6速度矢量vm6/(m·s−1) vmc+[0, 0, −100]T 表 2 不同算法分配结果
Table 2. Allocation results of different algorithms
算法 目标序号 拦截器1 拦截器2 拦截器3 拦截器4 拦截器5 拦截器6 AHA 3 1 2 2 1 3 GA+SQP
(无整数约束)3 1 2 2 1 3 GA(整数约束) 2 1 1 3 2 3 表 3 不同算法耗时与寻优结果
Table 3. Time consumption and optimization results of different algorithms
算法 求解耗时/s 代价矩阵+
算法求解耗时/s速度增量
寻优结果/(m·s−1)AHA 0.0005 0.0077 9465.9 GA+SQP
(无整数约束)9.3168 9.3152 9465.9 GA(整数约束) 64.4299 64.4328 10150.9 -
[1] 谢愈, 刘鲁华, 汤国建, 等. 多拦截器总体拦截方案设计与分析[J]. 北京航空航天大学学报, 2012, 38(3): 303-308.XIE Y, LIU L H, TANG G J, et al. Design and analysis of interception project for multiple kill vehicle interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(3): 303-308(in Chinese). [2] CHEN B, YAN B, WANG Y M. Research on multiple kill vehicles firepower distribution strategy based on adjust genetic algorithm[C]//Proceedings of the 25th Chinese Control and Decision Conference. Piscataway: IEEE Press, 2013: 3582-3586. [3] YANG B Q, LI X L, MA J. Target assignment based on hybrid model predictive control[J]. Applied Mechanics and Materials, 2014, 556-562: 3622-3626. [4] 顾佼佼, 赵建军, 颜骥, 等. 基于MODPSO-GSA的协同空战武器目标分配[J]. 北京航空航天大学学报, 2015, 41(2): 252-258.GU J J, ZHAO J J, YAN J, et al. Cooperative weapon-target assignment based on multi-objective discrete particle swarm optimization-gravitational search algorithm in air combat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 252-258(in Chinese). [5] MERKULOV V I, PLYASHECHNIK A S. Simplified target assignment problem for group engagement of aircraft[J]. Automation and Remote Control, 2019, 80(3): 490-501. doi: 10.1134/S0005117919030081 [6] KIM J, LEE W C, CHO D H, et al. Decentralized weapon target assignment against high-speed enemy missiles[C]//Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. [7] 张进, 郭浩, 陈统. 基于可适应匈牙利算法的武器-目标分配问题[J]. 兵工学报, 2021, 42(6): 1339-1344.ZHANG J, GUO H, CHEN T. Weapon-target assignment based on adaptable Hungarian algorithm[J]. Acta Armamentarii, 2021, 42(6): 1339-1344(in Chinese). [8] GUO J G, HU G J, GUO Z Y, et al. Evaluation model, intelligent assignment, and cooperative interception in multimissile and multitarget engagement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3104-3115. doi: 10.1109/TAES.2022.3144111 [9] GENG Z, HUANG Y Y, ZHANG H, et al. Improved sparrow search algorithm applied to multi-stage weapon target assignment[C]//Proceedings of the International Conference on Cyber-Physical Social Intelligence. Piscataway: IEEE Press, 2022: 98-103. [10] 邹子缘, 陈琪锋. 基于决策树搜索的空间飞行器集群对抗目标分配方法[J]. 航空学报, 2022, 43(S1): 726910.ZOU Z Y, CHEN Q F. Target assignment method of spacecraft cluster confrontation based on decision tree search[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726910(in Chinese). [11] 高树一, 林德福, 郑多, 等. 针对集群攻击的飞行器智能协同拦截策略[J]. 航空学报, 2023, 44(18): 328301.GAO S Y, LIN D F, ZHENG D, et al. Intelligent cooperative interception strategy of aircraft against cluster attack[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328301(in Chinese). [12] 苏山, 马泽远, 张立, 等. 改进粒子群优化多拦截器目标分配方法研究[J]. 弹箭与制导学报, 2024, 44(1): 41-48.SU S, MA Z Y, ZHANG L, et al. Research on multi-interceptor target assignment method using improved particle swarm optimization[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2024, 44(1): 41-48(in Chinese). [13] LI K B, ZHANG T T, CHEN L. Ideal proportional navigation for exoatmospheric interception[J]. Chinese Journal of Aeronautics, 2013, 26(4): 976-985. doi: 10.1016/j.cja.2013.06.007 [14] LI K B, SU W S, CHEN L. Performance analysis of three-dimensional differential geometric guidance law against low-speed maneuvering targets[J]. Astrodynamics, 2018, 2(3): 233-247. doi: 10.1007/s42064-018-0023-z [15] 白志会, 黎克波, 苏文山, 等. 现实真比例导引拦截任意机动目标捕获区域[J]. 航空学报, 2020, 41(8): 323947.BAI Z H, LI K B, SU W S, et al. Capture region of RTPN guidance law against arbitrarily maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323947(in Chinese). [16] LI K B, BAI Z H, HYO-SANG S, et al. Capturability of 3D RTPN guidance law against true-arbitrarily maneuvering target with maneuverability limitation[J]. Chinese Journal of Aeronautics, 2022, 35(7): 75-90. doi: 10.1016/j.cja.2021.10.004 [17] YANG C D, YANG C C. Analytical solution of three-dimensional realistic true proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 569-577. doi: 10.2514/3.21659 -


下载: