留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AHRS的无人机集群协同导航方法

史晨发 熊智 蒋旭 李其杰 王钲淳

史晨发,熊智,蒋旭,等. 基于AHRS的无人机集群协同导航方法[J]. 北京航空航天大学学报,2026,52(2):498-506 doi: 10.13700/j.bh.1001-5965.2024.0343
引用本文: 史晨发,熊智,蒋旭,等. 基于AHRS的无人机集群协同导航方法[J]. 北京航空航天大学学报,2026,52(2):498-506 doi: 10.13700/j.bh.1001-5965.2024.0343
SHI C F,XIONG Z,JIANG X,et al. Cooperative navigation method for UAV swarm based on AHRS[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):498-506 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0343
Citation: SHI C F,XIONG Z,JIANG X,et al. Cooperative navigation method for UAV swarm based on AHRS[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):498-506 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0343

基于AHRS的无人机集群协同导航方法

doi: 10.13700/j.bh.1001-5965.2024.0343
基金项目: 

国家自然科学基金(62073163,62103285,62203228);航空科学基金(202055052003);基础加强计划技术173领域基金(2021-JCJQ-JJ-0308)

详细信息
    通讯作者:

    E-mail:xiongzhi@nuaa.edu.cn

  • 中图分类号: V249.3;TN961

Cooperative navigation method for UAV swarm based on AHRS

Funds: 

National Natural Science Foundation of China (62073163,62103285,62203228); Aeronautical Science Foundation of China (202055052003); Foundation Strengthening Program Technology 173 Field Fund (2021-JCJQ-JJ-0308)

More Information
  • 摘要:

    为有效解决无人机集群在卫星部分拒止下的低成本导航定位问题,提出一种基于航姿参考系统(AHRS)的无人机集群协同导航方法。以AHRS作为基础完成三维位置状态递推模型设计;设计一种基于机间测距的分布式协同导航滤波器,利用构建的协同精度因子(CDOP)完成最优节点筛选,降低导航系统的计算负担;通过故障识别与隔离算法完成对受扰协同量测信息的诊断与系统重构;利用分布式协同导航算法完成位置解算。仿真与实验表明:协同导航方法能有效解决集群过度依赖卫星导航、大规模导航信息处理慢等难题,相较于传统多源融合算法有效降低了系统硬件成本,符合大规模无人机集群低成本下的高精度定位需求。

     

  • 图 1  无人机集群协同导航场景

    Figure 1.  UAV swarm cooperative navigation scenario

    图 2  基于AHRS的协同导航原理示意图

    Figure 2.  Schematic diagram of AHRS-based cooperative navigation principle

    图 3  AHRS航位推算原理

    Figure 3.  Principle of AHRS position estimation

    图 4  协同导航方法流程

    Figure 4.  Flow of cooperative navigation algorithm

    图 5  无人机集群初始位置分布

    Figure 5.  Initial position distribution of UAV swarm

    图 6  无人机集群节点拓扑

    Figure 6.  Node topology of UAV swarm

    图 7  不同锚节点数量下定位误差曲线

    Figure 7.  Positioning error curves for different number of anchor nodes

    图 8  测距故障下协同定位误差曲线

    Figure 8.  Cooperative localization error curves with ranging fault

    图 9  协同导航物理验证平台

    Figure 9.  Cooperative navigation physical verification platform

    图 10  无人机集群飞行实验场景

    Figure 10.  Flight experiment scenario for UAV swarm

    图 11  无人机集群实际飞行轨迹

    Figure 11.  Physical flight trajectories of UAV swarm

    图 12  基于实采数据的定位性能分析

    Figure 12.  Positioning performance analysis based on physical data

    图 13  量测失效下协同定位误差

    Figure 13.  Cooperative localization errors under measurement failure

    表  1  仿真传感器性能配置

    Table  1.   Simulated sensor performance configuration

    参数 数值
    AHRS航姿漂移误差/(°) (0.2,0.2,0.3)
    AHRS航姿相关时间/s 60
    AHRS加速度计偏置误差/(m·s−2 0.00038g
    AHRS加速度计相关时间/s 3600
    GNSS位置误差/m 5
    GNSS速度误差/(m·s−1 0.2
    OES测距误差/m 3
    OES测角误差/(°) 0.01
    大气传感器高度白噪声/m 10
    数据链路测距误差/m 10
    下载: 导出CSV

    表  2  定位均方根误差统计结果

    Table  2.   Statistics of position root mean square error

    锚节点数量 定位RMSE绝对误差/m 定位RMSE相对误差/%
    0 2871.5 265.7
    1 1049.5 53.8
    2 21.3 23.6
    3 18.7 19.8
    5 15.5 17.9
    下载: 导出CSV

    表  3  未知节点定位均方根误差

    Table  3.   Root mean square error of unknown node localisation

    节点编号 融合机制 定位RMSE/m
    经度 纬度 高度
    6 所有互连节点 10.1 9.4 7.3
    3个最优节点 13.8 10.9 7.9
    11 所有互连节点 11.5 9.8 7.6
    3个最优节点 13.4 11.2 8.0
    下载: 导出CSV
  • [1] 陈清阳, 辛宏博, 王玉杰, 等. 一种多机协同打击的快速航迹规划方法[J]. 北京航空航天大学学报, 2022, 48(7): 1145-1153.

    CHEN Q Y, XIN H B, WANG Y J, et al. A rapid path planning method for multiple UAVs to cooperative strike[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1145-1153(in Chinese).
    [2] ZHOU Z Y, ZHANG C T, XU C, et al. Energy-efficient industrial Internet of UAVs for power line inspection in smart grid[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2705-2714. doi: 10.1109/TII.2018.2794320
    [3] 张鹏飞, 何印, 马振华, 等. 无人机集群协同控制技术综述[J]. 兵器装备工程学报, 2024, 45(4): 1-9.

    ZHANG P F, HE Y, MA Z H, et al. Review on cooperative control technology of UAV swarm[J]. Journal of Ordnance Equipment Engineering, 2024, 45(4): 1-9(in Chinese).
    [4] TEUNISSEN P J G, KHODABANDEH A. Review and principles of PPP-RTK methods[J]. Journal of Geodesy, 2015, 89(3): 217-240. doi: 10.1007/s00190-014-0771-3
    [5] GENG J, TEFERLE F N, MENG X, et al. Towards PPP-RTK: ambiguity resolution in real-time precise point positioning[J]. Advances in Space Research, 2011, 47(10): 1664-1673. doi: 10.1016/j.asr.2010.03.030
    [6] ZHANG G H, XU P H, XU H S, et al. Prediction on the urban GNSS measurement uncertainty based on deep learning networks with long short-term memory[J]. IEEE Sensors Journal, 2021, 21(18): 20563-20577. doi: 10.1109/JSEN.2021.3098006
    [7] ZHU N, MARAIS J, BÉTAILLE D, et al. GNSS position integrity in urban environments: a review of literature[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2762-2778. doi: 10.1109/TITS.2017.2766768
    [8] DALLA TORRE A, CAPORALI A. An analysis of intersystem biases for multi-GNSS positioning[J]. GPS Solutions, 2015, 19(2): 297-307. doi: 10.1007/s10291-014-0388-2
    [9] YASUDA Y D V, MARTINS L E G, CAPPABIANCO F A M. Autonomous visual navigation for mobile robots[J]. ACM Computing Surveys, 2021, 53(1): 1-34.
    [10] HAI J, HAO Y T, ZOU F Z, et al. A visual navigation system for UAV under diverse illumination conditions[J]. Applied Artificial Intelligence, 2021, 35(15): 1529-1549. doi: 10.1080/08839514.2021.1985799
    [11] WANG W Q. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1001-1012.
    [12] GUAN R P, RISTIC B, WANG L P, et al. Feature-based robot navigation using a Doppler-azimuth radar[J]. International Journal of Control, 2017, 90(4): 888-900. doi: 10.1080/00207179.2016.1244727
    [13] 赵春晖, 周昳慧, 林钊, 等. 无人机景象匹配视觉导航技术综述[J]. 中国科学: 信息科学, 2019, 49(5): 507-519. doi: 10.1360/N112018-00316

    ZHAO C H, ZHOU Y H, LIN Z, et al. Review of scene matching visual navigation for unmanned aerial vehicles[J]. Scientia Sinica (Informations), 2019, 49(5): 507-519(in Chinese). doi: 10.1360/N112018-00316
    [14] JIN Z L, WANG X Z, MORAN B, et al. Multi-region scene matching based localisation for autonomous vision navigation of UAVs[J]. Journal of Navigation, 2016, 69(6): 1215-1233. doi: 10.1017/S0373463316000187
    [15] GYAGENDA N, HATILIMA J V, ROTH H, et al. A review of GNSS-independent UAV navigation techniques[J]. Robotics and Autonomous Systems, 2022, 152: 104069. doi: 10.1016/j.robot.2022.104069
    [16] AZZAM R, BOIKO I, ZWEIRI Y. Swarm cooperative navigation using centralized training and decentralized execution[J]. Drones, 2023, 7(3): 193. doi: 10.3390/drones7030193
    [17] 周泽波, 张泽亮, 彭鑫, 等. 基于记忆融合模式的多无人机分散式协同导航方法[J]. 航空学报, 2023, 44(20): 628440.

    ZHOU Z B, ZHANG Z L, PENG X, et al. Multi-UAV decentralized cooperative navigation method based on memory-fusion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628440(in Chinese).
    [18] YANG C Z, STRADER J, GU Y, et al. Cooperative navigation using pairwise communication with ranging and magnetic anomaly measurements[J]. Journal of Aerospace Information Systems, 2020, 17(11): 624-633. doi: 10.2514/1.I010785
    [19] 熊骏, 熊智, 于永军, 等. 超宽带测距辅助的无人机近距离相对导航方法[J]. 中国惯性技术学报, 2018, 26(3): 346-351.

    XIONG J, XIONG Z, YU Y J, et al. Close relative navigation algorithm for unmanned aerial vehicle aided by UWB relative measurement[J]. Journal of Chinese Inertial Technology, 2018, 26(3): 346-351(in Chinese).
    [20] GROSS J N, GU Y, RHUDY M B. Robust UAV relative navigation with DGPS, INS, and peer-to-peer radio ranging[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(3): 935-944. doi: 10.1109/TASE.2014.2383357
    [21] 屈耀红, 张峰, 谷任能, 等. 基于距离测量的多无人机协同目标定位方法[J]. 西北工业大学学报, 2019, 37(2): 266-272. doi: 10.1051/jnwpu/20193720266

    QU Y H, ZHANG F, GU R N, et al. Target cooperative location method of multi-UAV based on pseudo range measurement[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 266-272(in Chinese). doi: 10.1051/jnwpu/20193720266
    [22] 魏帅迎, 杜雨桐, 胡博, 等. GNSS拒止环境下UAV集群协同导航技术发展现状及分析[J]. 导航与控制, 2023, 22(4): 5-16.

    WEI S Y, DU Y T, HU B, et al. Development status and analysis of UAV swarm cooperative navigation technology in GNSS-denied environment[J]. Navigation and Control, 2023, 22(4): 5-16(in Chinese).
    [23] HUANG Y L, ZHANG Y G, XU B, et al. A new adaptive extended Kalman filter for cooperative localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 353-368. doi: 10.1109/TAES.2017.2756763
    [24] SHALABY M, SHOKAIR M, MESSIHA N W. RSS cooperative localization in WSNs operating in the millimeter bands[J]. Wireless Personal Communications, 2020, 115(3): 2327-2334. doi: 10.1007/s11277-020-07683-7
    [25] WYMEERSCH H, LIEN J, WIN M Z. Cooperative localization in wireless networks[J]. Proceedings of the IEEE, 2009, 97(2): 427-450. doi: 10.1109/JPROC.2008.2008853
    [26] TANG J J, LI P J. Airborne integrated navigation system based on SINS/GPS/TAN/EOAN[J]. Mathematical Problems in Engineering, 2020, 2020(1): 3218942.
    [27] CHAN Y T, TSUI W Y, SO H C, et al. Time-of-arrival based localization under NLOS conditions[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 17-24. doi: 10.1109/TVT.2005.861207
    [28] SHI C F, XIONG Z, CHEN M X, et al. Cooperative navigation of unmanned aerial vehicle formation with delayed measurement[J]. Measurement Science and Technology, 2024, 35(6): 066302. doi: 10.1088/1361-6501/ad2741
    [29] HU J Y, NIU H L, CARRASCO J, et al. Fault-tolerant cooperative navigation of networked UAV swarms for forest fire monitoring[J]. Aerospace Science and Technology, 2022, 123: 107494. doi: 10.1016/j.ast.2022.107494
    [30] MCHUGH M L. The Chi-square test of independence[J]. Biochemia Medica, 2013, 23(2): 143-149.
    [31] ZHANG P F, MA Z H, HE Y, et al. Cooperative positioning method of a multi-UAV based on an adaptive fault-tolerant federated filter[J]. Sensors, 2023, 23(21): 8823.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  102
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-09-19
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答