Carrier-based aircraft direct lift control based on sliding mode observer and non-linear dynamic inversion technology
-
摘要:
舰载机是航母战斗群的重要组成部分,在实际运用中有众多技术难点,而着舰技术是其中关键难点之一。针对舰载机系统的多变量耦合特点和着舰过程中环境复杂多变等问题,提出一种基于滑模观测器和非线性动态逆技术的舰载机直接升力控制系统。为补偿舰尾流对控制精度的影响,设计一种自适应滑模观测器,可以有效估计外界干扰对舰载机运动造成的影响。为实现控制输入之间的解耦,利用非线性动态逆控制技术,建立舰载机的直接升力控制系统,并提出自调节鸽群优化(SAPIO)算法用于整定控制系统参数,提升控制精度。仿真对比实验表明:所提舰载机直接升力控制系统相比传统比例-积分-微分控制系统着舰精度更高。
Abstract:Carrier-based aircraft are an important part of the aircraft carrier battle group. There are many technical challenges in practical application, including the landing technology. This work proposes a sliding mode observer and nonlinear dynamic inversion technology-based direct lift control system for carrier-based aircraft, aiming to address the issues of multivariable coupling and difficult landing environments. In order to account for the impact of airwake on control accuracy, this research designs an adaptive sliding mode observer that can accurately assess the impact of external disturbances on the carrier aircraft's motion. To realize the decoupling of control inputs, a direct lift control system for carrier-based aircraft is established by using nonlinear dynamic inverse control technology, and a self-adjusting pigeon-inspired optimization (SAPIO) algorithm is proposed for parameter tuning of the system. The simulation results show that the proposed direct lift control system has higher control accuracy than the traditional proportional-integral-differential control system.
-
[1] 王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报, 2021, 42(8): 525859.WANG Y Q. Fixed-wing carrier-based aircraft: key technologies and future development[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525859(in Chinese). [2] 段海滨, 袁洋, 张秀林. 干扰和执行器故障下的舰载机着舰容错控制系统[J]. 南京航空航天大学学报, 2022, 54(5): 949-957.DUAN H B, YUAN Y, ZHANG X L. Design of a carrier-based aircraft landing fault-tolerant control system with disturbances and actuator faults[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 949-957(in Chinese). [3] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报, 2019, 40(4): 622328.DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622328(in Chinese). [4] 何杭轩, 段海滨, 张秀林, 等. 基于扩张鸽群优化的舰载无人机横侧向着舰自主控制[J]. 智能系统学报, 2022, 17(1): 151-157.HE H X, DUAN H B, ZHANG X L, et al. Lateral automatic carrier landing control based on expanded pigeon inspired optimization[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 151-157(in Chinese). [5] 卢建华, 杨文奇, 周思羽, 等. 基于LADRC的舰载机纵向着舰甲板运动跟踪技术研究[J]. 飞行力学, 2022, 40(6): 9-15.LU J H, YANG W Q, ZHOU S Y, et al. Research on LADRC based longitudinal landing deck tracking technology of carrier-based aircraft[J]. Flight Dynamics, 2022, 40(6): 9-15(in Chinese). [6] ZHEN Z Y, TAO G, YU C J, et al. A multivariable adaptive control scheme for automatic carrier landing of UAV[J]. Aerospace Science and Technology, 2019, 92: 714-721. doi: 10.1016/j.ast.2019.06.030 [7] WANG X, CHEN X, WEN L Y. Adaptive disturbance rejection control for automatic carrier landing system[J]. Mathematical Problems in Engineering, 2016, 2016(1): 7345056. [8] XUE Y X, ZHEN Z Y, YANG L Q, et al. Adaptive fault-tolerant control for carrier-based UAV with actuator failures[J]. Aerospace Science and Technology, 2020, 107: 106227. doi: 10.1016/j.ast.2020.106227 [9] GUAN Z Y, LIU H, ZHENG Z W, et al. Fixed-time control for automatic carrier landing with disturbance[J]. Aerospace Science and Technology, 2021, 108: 106403. doi: 10.1016/j.ast.2020.106403 [10] GUAN Z Y, MA Y P, ZHENG Z W. Moving path following with prescribed performance and its application on automatic carrier landing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(4): 2576-2590. [11] DUAN H B, YUAN Y, ZENG Z G. Automatic carrier landing system with fixed time control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3586-3600. doi: 10.1109/TAES.2022.3156070 [12] YUAN Y, DUAN H B, ZENG Z G. Automatic carrier landing control with external disturbance and input constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(2): 1426-1438. [13] 吴启龙, 朱齐丹. 基于线性自抗扰控制的纵向舰载机直接升力全自动着舰控制[J]. 智能系统学报, 2024, 19(1): 142-152.WU Q L, ZHU Q D. Direct lift fully-automatic landing control of longitudinal carrier-based aircraft on basis of linear active disturbance rejection control[J]. CAAI Transactions on Intelligent Systems, 2024, 19(1): 142-152(in Chinese). [14] GUAN Z Y, LIU H, ZHENG Z W, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 107247. doi: 10.1016/j.ast.2021.107247 [15] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9): 2079-2091.WU W H, WANG J, GAO L, et al. Analysis on MAGIC CARPET carrier landing technology[J]. Systems Engineering and Electronics, 2018, 40(9): 2079-2091(in Chinese). [16] GREEN B E, FINDLAY D. CFD analysis of the F/A-18E super hornet during aircraft-carrier landing high-lift aerodynamic conditions[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. [17] 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 525840.ZHANG Z B, ZHANG X L, WANG J X, et al. An IDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525840(in Chinese). [18] 罗飞, 张军红, 王博, 等. 基于非线性动态逆的舰载机直接升力航迹控制[J]. 飞行力学, 2021, 39(1): 40-45.LUO F, ZHANG J H, WANG B, et al. Direct lift trajectory control for carrier aircraft based on NDI[J]. Flight Dynamics, 2021, 39(1): 40-45(in Chinese). [19] DENG Y M, DUAN H B. Control parameter design for automatic carrier landing system via pigeon-inspired optimization[J]. Nonlinear Dynamics, 2016, 85(1): 97-106. doi: 10.1007/s11071-016-2670-z [20] DUAN H B, QIAO P X. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37. doi: 10.1108/IJICC-02-2014-0005 [21] YUAN Y, DENG Y M, LUO S D, et al. Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(7): 1020-1031. [22] YUAN Y, DUAN H B. Active disturbance rejection attitude control of unmanned quadrotor via paired coevolution pigeon-inspired optimization[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(2): 302-314. doi: 10.1108/AEAT-07-2020-0136 [23] DUAN H B, WANG X H. Echo state networks with orthogonal pigeon-inspired optimization for image restoration[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(11): 2413-2425. doi: 10.1109/TNNLS.2015.2479117 [24] United States Navy. Military specifications-flying qualities of piloted airplanes: MIL-F-8785C[R]. Washington, D. C.: United States Navy, 1996. [25] 张放, 蒙文巩, 杜亮. 舰载机着舰舰面效应及其补偿方法研究[J]. 飞行力学, 2016, 34(1): 77-81.ZHANG F, MENG W G, DU L. Research on deck effect and compensation method for carrier aircraft landing[J]. Flight Dynamics, 2016, 34(1): 77-81(in Chinese). [26] CHAKRABORTY A, SEILER P, BALAS G J. Susceptibility of F/A-18 flight controllers to the falling-leaf mode: linear analysis[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1): 57-72. doi: 10.2514/1.50674 [27] GOLDBERG D E. Genetic algorithms in search, optimization and machine learning[R]. Boston: Addison-Wesley, 1989. [28] KADIRKAMANATHAN V, SELVARAJAH K, FLEMING P J. Stability analysis of the particle dynamics in particle swarm optimizer[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 245-255. doi: 10.1109/TEVC.2005.857077 -


下载: