留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性优化双目VIO的在线时间偏差标定实现方法

曹梓育 杨建华

曹梓育,杨建华. 基于非线性优化双目VIO的在线时间偏差标定实现方法[J]. 北京航空航天大学学报,2026,52(2):516-523 doi: 10.13700/j.bh.1001-5965.2024.0374
引用本文: 曹梓育,杨建华. 基于非线性优化双目VIO的在线时间偏差标定实现方法[J]. 北京航空航天大学学报,2026,52(2):516-523 doi: 10.13700/j.bh.1001-5965.2024.0374
CAO Z Y,YANG J H. Nonlinear optimization-based online temporal calibration method of stereo camera and inertial measurement unit in stereo VIO[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):516-523 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0374
Citation: CAO Z Y,YANG J H. Nonlinear optimization-based online temporal calibration method of stereo camera and inertial measurement unit in stereo VIO[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):516-523 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0374

基于非线性优化双目VIO的在线时间偏差标定实现方法

doi: 10.13700/j.bh.1001-5965.2024.0374
详细信息
    通讯作者:

    E-mail:yangjianhua@nwpu.edu.cn

  • 中图分类号: TP242.6

Nonlinear optimization-based online temporal calibration method of stereo camera and inertial measurement unit in stereo VIO

More Information
  • 摘要:

    基于非线性优化的双目视觉惯性里程计(VIO)系统在低纹理等环境下长时间运行误差累积问题严重。因此,针对基于非线性优化的双目VIO系统,提出在线时间偏差标定方法。所提方法充分发挥双目相机的优势,利用双目相机中的极线约束构建误差因子,减少特征点误匹配对时间偏差标定的负面影响,提高系统鲁棒性和状态估计的准确度,适用于低成本,自组装系统。在公开数据集上的实验表明:所提方法准确度更高,收敛速度更快,能够提高系统状态估计的准确度和鲁棒性。真实场景下的实验也验证了所提方法的有效性。

     

  • 图 1  特征点移动速度计算

    Figure 1.  Calculation method of features velocity

    图 2  基于非线性优化双目 VIO 的在线时间偏差标定流程

    Figure 2.  Block of nonlinear optimization-based online temporal calibration against stereo VIO

    图 3  相机与 IMU 数据间存在时间偏差

    Figure 3.  Illustration of time offset between image and inertial data

    图 4  基于极线约束构建新的误差因子

    Figure 4.  Construction of new error factor based on epipolar constraint

    图 5  仿真实验的时间偏差标定过程

    Figure 5.  Calibration program of simulation experiment

    图 6  三维空间的轨迹对比

    Figure 6.  Trajectory of simulation experiment in 3-D

    图 7  xy 平面的轨迹对比

    Figure 7.  Trajectory of simulation experiment in xy plane

    图 8  传感器模块

    Figure 8.  Sensor module

    图 9  真实场景下的系统运行轨迹

    Figure 9.  Trajectory of system in real-world

    图 10  真实场景下的时间偏差标定过程

    Figure 10.  Calibration program of real-world experiment

    表  1  仿真实验中的标定结果

    Table  1.   Simulation experiment of calibration results

    数据集 延时设定值/ms 延时估计值/ms
    本文方法 VINS-Fusion[19]
    MH_02_easy −10 −9.98 −9.00
    5 4.97 4.35
    10 9.87 8.91
    15 14.61 13.73
    MH_03_midium −10 −9.37 −9.37
    5 5.17 4.86
    10 10.01 9.64
    15 14.83 14.57
    MH_04_difficult −10 −9.31 −9.28
    5 5.12 5.01
    10 10.05 9.77
    15 15.06 14.65
    下载: 导出CSV

    表  2  仿真实验中的RMSE结果

    Table  2.   Simulation experiment of RMSE results

    数据集 延时设定值/ms RMSE/m
    本文方法 VINS-Fusion[19]
    MH_02_easy−100.26920.2742
    50.26090.2615
    100.26900.2686
    150.27680.2702
    MH_03_medium−100.44800.4785
    50.45290.4540
    100.45260.4548
    150.45230.4497
    MH_04_difficult−100.52970.5258
    50.52990.5358
    100.53080.5346
    150.52980.5298
    下载: 导出CSV
  • [1] 王朋, 郝伟龙, 倪翠, 等. 视觉SLAM方法综述[J]. 北京航空航天大学学报, 2024, 50(2): 359-367.

    WANG P, HAO W L, NI C, et al. An overview of visual SLAM methods[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(2): 359-367(in Chinese).
    [2] 左晋, 张皓, 远子涵, 等. 移动机器人SLAM发展现状综述[J]. 北京印刷学院学报, 2023, 31(6): 30-32.

    ZUO J, ZHANG H, YUAN Z H, et al. A review on the development status of mobile robot and SLAM[J]. Journal of Beijing Institute of Graphic Communication, 2023, 31(6): 30-32(in Chinese).
    [3] 曾庆化, 罗怡雪, 孙克诚, 等. 视觉及其融合惯性的SLAM技术发展综述[J]. 南京航空航天大学学报, 2022, 54(6): 1007-1020.

    ZENG Q H, LUO Y X, SUN K C, et al. Review on SLAM technology development for vision and its fusion of inertial information[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(6): 1007-1020(in Chinese).
    [4] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332. doi: 10.1109/TRO.2016.2624754
    [5] FUENTES-PACHECO J, RUIZ-ASCENCIO J, RENDÓN-MANCHA J M. Visual simultaneous localization and mapping: a survey[J]. Artificial Intelligence Review, 2015, 43(1): 55-81. doi: 10.1007/s10462-012-9365-8
    [6] KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Piscataway: IEEE Press, 2007: 225-234.
    [7] BRESSON G, ALSAYED Z, YU L, et al. Simultaneous localization and mapping: a survey of current trends in autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(3): 194-220. doi: 10.1109/TIV.2017.2749181
    [8] CORKE P, LOBO J, DIAS J. An introduction to inertial and visual sensing[J]. The International Journal of Robotics Research, 2007, 26(6): 519-535.
    [9] VAN BRUMMELEN J, O’BRIEN M, GRUYER D, et al. Autonomous vehicle perception: the technology of today and tomorrow[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 384-406. doi: 10.1016/j.trc.2018.02.012
    [10] CHEN C, ZHU H, LI M G, et al. A review of visual-inertial simultaneous localization and mapping from filtering-based and optimization-based perspectives[J]. Robotics, 2018, 7(3): 45. doi: 10.3390/robotics7030045
    [11] ZOU D P, WU Y X, PEI L, et al. StructVIO: visual-inertial odometry with structural regularity of man-made environments[J]. IEEE Transactions on Robotics, 2019, 35(4): 999-1013. doi: 10.1109/TRO.2019.2915140
    [12] QIN T, LI P L, SHEN S J. VINS-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. doi: 10.1109/TRO.2018.2853729
    [13] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual–inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. doi: 10.1109/TRO.2021.3075644
    [14] WEN S H, TAO S, LIU X, et al. CD-SLAM: a real-time stereo visual–inertial SLAM for complex dynamic environments with semantic and geometric information[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2517808.
    [15] ZHANG T, XU J Y, SHEN H, et al. RMSC-VIO: robust multi-stereoscopic visual-inertial odometry for local visually challenging scenarios[J]. IEEE Robotics and Automation Letters, 2024, 9(5): 4130-4137. doi: 10.1109/LRA.2024.3377008
    [16] MUR-ARTAL R, TARDÓS J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803. doi: 10.1109/LRA.2017.2653359
    [17] MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 3565-3572.
    [18] LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34(3): 314-334. doi: 10.1177/0278364914554813
    [19] QIN T, SHEN S J. Online temporal calibration for monocular visual-inertial systems[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2018: 3662-3669.
    [20] KELLY J, SUKHATME G S. A general framework for temporal calibration of multiple proprioceptive and exteroceptive sensors[C]//Proceedings of the Experimental Robotics. Berlin: Springer, 2014: 195-209.
    [21] FURGALE P, REHDER J, SIEGWART R. Unified temporal and spatial calibration for multi-sensor systems[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 1280-1286.
    [22] LI M Y, MOURIKIS A I. 3-D motion estimation and online temporal calibration for camera-IMU systems[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 5709-5716.
    [23] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2012: 573-580.
    [24] BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets[J]. The International Journal of Robotics Research, 2016, 35(10): 1157-1163. doi: 10.1177/0278364915620033
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  118
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-09-09
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答