留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的地形等高线辅助导航

李睿 汤浔 都岩巍 张睿 许斌

李睿,汤浔,都岩巍,等. 基于神经网络的地形等高线辅助导航[J]. 北京航空航天大学学报,2026,52(2):524-532 doi: 10.13700/j.bh.1001-5965.2024.0376
引用本文: 李睿,汤浔,都岩巍,等. 基于神经网络的地形等高线辅助导航[J]. 北京航空航天大学学报,2026,52(2):524-532 doi: 10.13700/j.bh.1001-5965.2024.0376
LI R,TANG X,DU Y W,et al. Terrain contour aided navigation based on neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):524-532 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0376
Citation: LI R,TANG X,DU Y W,et al. Terrain contour aided navigation based on neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):524-532 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0376

基于神经网络的地形等高线辅助导航

doi: 10.13700/j.bh.1001-5965.2024.0376
基金项目: 

国家自然科学基金青年项目(62403382); 国家自然科学基金重点项目(61933010); 中央高校基本科研业务费专项资金资助(G2024KY05106); 深圳市科技创新委员会基金(JCYJ20230807145500002); 陕西省重点研发计划(2021GXLH-01-13); 陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-92)

详细信息
    通讯作者:

    E-mail:ruizh@nwpu.edu.cn

  • 中图分类号: V249.3

Terrain contour aided navigation based on neural network

Funds: 

The Youth Program of National Natural Science Foundation of China (62403382); The Key Program of National Natural Science Foundation of China (61933010); The Fundamental Research Funds for the Central Universities (G2024KY05106); Foundation of Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20230807145500002); Key Research and Development Program in Shaanxi Province (2021GXLH-01-13); “Scientist+Engineer” Team Building Foundation of Shaanxi Qinchuangyuan (2022KXJ-92)

More Information
  • 摘要:

    针对地形高程匹配定位精度低及遍历搜索方式实时性差的问题,提出一种基于神经网络的地形等高线辅助导航方法。研究二维等高线特征匹配以提高匹配算法在高程噪声下的鲁棒能力,考虑小波变换具备旋转、平移不变性特点,利用小波变换子提取等高线边缘特征;同时提出基于神经网络的等高线边缘特征匹配算法,利用多个子网进行分类识别代替传统遍历搜索匹配过程,显著提高算法实时性及匹配准确度。仿真实验表明:所提算法与地形高程匹配相比匹配成功率提高30%以上,较基于遍历搜索的地形等高线匹配算法匹配时长缩短97%以上。

     

  • 图 1  等高线边缘特征提取算法流程

    Figure 1.  Contour line edge feature extraction algorithm process

    图 2  基于神经网络的等高线边缘特征匹配算法示意图

    Figure 2.  Schematic diagram of contour line edge feature matching algorithm based on neural network

    图 3  区域网络划分及分类标签示意图

    Figure 3.  Schematic diagram of regional networks division and classification label

    图 4  矩形搜索区域示意图

    Figure 4.  Schematic diagram of rectangular search area

    图 5  匹配搜索区域分布

    Figure 5.  Distribution of matching search areas

    图 6  仿真预设飞行轨迹及子区域划分示意图

    Figure 6.  Schematic diagram of simulation preset flight trajectory and sub area division

    图 7  各分区地形熵分布及各子网测试准确率统计

    Figure 7.  Statistics of terrain entropy distribution and test accuracy of each subnet in each division

    图 8  地形辅助导航轨迹对比

    Figure 8.  Comparison of terrain aided navigation trajectory

    图 9  东向导航误差

    Figure 9.  Eastbound navigation error

    图 10  北向导航误差

    Figure 10.  Northbound navigation error

    表  1  仿真主要参数设置

    Table  1.   Setting of main simulation parameters

    参数 数值
    数字地图分辨率/m 30$\subseteq $30
    子区域大小/(″) $80 \times 80$
    子区域内位置点数量 6400
    测量地形高程图大小/m 630×630(21×21)
    高度量测误差/m 5 (1倍标准差)
    下载: 导出CSV

    表  2  惯导仿真参数设置

    Table  2.   SINS parameters setting

    参数 数值
    SINS解算周期/s 0.01
    陀螺常值漂移/((°)·h−1) $ [0.01,0.015,0.02] $
    陀螺角度随机游走/((°)·h−1/2) 0.001
    加速度计常值零偏/μg $[80,90,100]\;$
    加速度计速度随机游走/(μg·Hz−1/2) 0.5
    下载: 导出CSV

    表  3  2 m高度量测误差时匹配成功率统计

    Table  3.   Statistics of matching success rate with a height measurement error of 2 m

    惯导初始
    位置误差/m
    匹配成功率/%
    本文算法 等高线
    匹配算法[24]
    地形高程数据
    匹配算法[23]
    150 99.21 98.49 93.52
    200 99.19 98.48 89.63
    500 99.15 97.33 82.85
    下载: 导出CSV

    表  4  5 m高度量测误差时匹配成功率统计

    Table  4.   Statistics of matching success rate with a height measurement error of 5 m

    惯导初始
    位置误差/m
    匹配成功率/%
    本文算法 等高线
    匹配算法[24]
    地形高程数据
    匹配算法[23]
    150 99.19 92.35 72.48
    200 99.17 92.35 65.44
    500 99.06 91.13 51.38
    下载: 导出CSV

    表  5  平均单次匹配耗时统计

    Table  5.   Statistics of average single matching time

    惯导初始
    位置误差/m
    平均单次匹配耗时/s
    本文算法 等高线
    匹配算法[24]
    地形高程数据
    匹配算法[23]
    150 0.0076 0.2725 0.0005
    200 0.0089 0.4113 0.0006
    500 0.0189 0.6705 0.0022
    下载: 导出CSV
  • [1] MA T, DING S S, LI Y, et al. A review of terrain aided navigation for underwater vehicles[J]. Ocean Engineering, 2023, 281: 114779. doi: 10.1016/j.oceaneng.2023.114779
    [2] DING P, CHENG X H. A new contour-based combined matching algorithm for underwater terrain-aided strapdown inertial navigation system[J]. Measurement, 2022, 202: 111870. doi: 10.1016/j.measurement.2022.111870
    [3] ZHAO W L, QI S J, LIU R T, et al. A review of underwater multi-source positioning and navigation technology[M]//Advances in Guidance, Navigation and Control. Berlin: Springer, 2023: 5466-5479.
    [4] 田阳, 李国庆, 宋新. 一种三维地形特征提取和匹配方法[J]. 宇航学报, 2018, 39(6): 690-696.

    TIAN Y, LI G Q, SONG X. A novel 3D terrain feature detecting and matching method[J]. Journal of Astronautics, 2018, 39(6): 690-696(in Chinese).
    [5] 鲜勇, 任乐亮, 杨子成, 等. 高超声速滑翔飞行器地形匹配辅助导航方法研究[J]. 北京航空航天大学学报, 2020, 46(4): 691-702.

    XIAN Y, REN L L, YANG Z C, et al. Terrain match aided navigation method of hypersonic glide vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 691-702(in Chinese).
    [6] 王丹, 刘利强, 奔粤阳, 等. 基于改进TERCOM的地形辅助导航算法[J]. 中国惯性技术学报, 2023, 31(2): 165-170.

    WANG D, LIU L Q, BEN Y Y, et al. Terrain aided navigation algorithm based on improved TERCOM[J]. Journal of Chinese Inertial Technology, 2023, 31(2): 165-170(in Chinese).
    [7] RUI J, WANG C, ZHANG H, et al. Matching multi-source DEMs in mountainous terrains[J]. Remote Sensing Letters, 2016, 7(6): 571-580. doi: 10.1080/2150704X.2016.1168944
    [8] WANG K D, ZHU T Q, GAO Y F, et al. Efficient terrain matching with 3-D Zernike moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(1): 226-235.
    [9] LI Y, WANG R P, CHEN P Y, et al. Terrain matching positioning method based on node multi-information fusion[J]. Journal of Navigation, 2017, 70(1): 82-100. doi: 10.1017/S0373463316000369
    [10] LI Z W, ZHENG W, WU F. Geodesic-based method for improving matching efficiency of underwater terrain matching navigation[J]. Sensors, 2019, 19(12): 2709. doi: 10.3390/s19122709
    [11] CHEN P Y, LIU Y, CHEN X L, et al. Underwater terrain positioning method based on Markov random field for unmanned underwater vehicles[J]. Frontiers in Marine Science, 2023, 10: 1201716. doi: 10.3389/fmars.2023.1201716
    [12] LI Y, MA T, CHEN P Y, et al. Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation[J]. Ocean Engineering, 2017, 133: 107-115. doi: 10.1016/j.oceaneng.2017.01.026
    [13] 何艳萍, 刘新学, 蔡艳平, 等. 基于粒子群优化的飞行器地形匹配新算法[J]. 红外与激光工程, 2016, 45(S1): 122-127.

    HE Y P, LIU X X, CAI Y P, et al. A new algorithm for aircraft terrain matching based on particle swarm optimization[J]. Infrared and Laser Engineering, 2016, 45(S1): 122-127(in Chinese).
    [14] WANG D, LIU L Q, BEN Y Y, et al. Seabed terrain-aided navigation algorithm based on combining artificial bee colony and particle swarm optimization[J]. Applied Sciences, 2023, 13(2): 1166. doi: 10.3390/app13021166
    [15] ZHANG F, BIAN H Y, GE W, et al. Exploiting deep matching and underwater terrain images to improve underwater localization accuracy[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 7501305.
    [16] 袁慧, 谭章禄, 王福浩. 一种高效的相似性度量方法及其分类效果研究[J]. 中国科学: 技术科学, 2022, 52(7): 1096-1110. doi: 10.1360/SST-2022-0049

    YUAN H, TAN Z L, WANG F H. An efficient similarity measurement method and its classification effect[J]. Scientia Sinica (Technologica), 2022, 52(7): 1096-1110(in Chinese). doi: 10.1360/SST-2022-0049
    [17] 陈俊风, 王玉浩, 张学武, 等. 基于小波变换与差分变异BSO-BP算法的大坝变形预测[J]. 控制与决策, 2021, 36(7): 1611-1618.

    CHEN J F, WANG Y H, ZHANG X W, et al. Dam deformation prediction based on wavelet transform and differential mutation BSO-BP algorithm[J]. Control and Decision, 2021, 36(7): 1611-1618(in Chinese).
    [18] MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: a survey[J]. International Journal of Computer Vision, 2021, 129(1): 23-79. doi: 10.1007/s11263-020-01359-2
    [19] 张睿, 李万睿, 肖勇, 等. 基于航迹规划的无人机地形辅助导航[J]. 哈尔滨工程大学学报, 2024, 45(3): 459-465.

    ZHANG R, LI W R, XIAO Y, et al. Path planning-based terrain contour matching navigation of unmanned aerial vehicles[J]. Journal of Harbin Engineering University, 2024, 45(3): 459-465(in Chinese).
    [20] 龙远, 邓小龙, 杨希祥, 等. 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48(10): 1970-1978.

    LONG Y, DENG X L, YANG X X, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978(in Chinese).
    [21] 崔西明, 邱志鹏, 魏嘉, 等. 基于数据驱动的结构钢表面应力磁巴克豪森噪声表征方法[J]. 航空学报, 2023, 44(8): 427237.

    CUI X M, QIU Z P, WEI J, et al. Data-driven method for characterization of structural steel surface stress of magnetic Barkhausen noise[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 427237(in Chinese).
    [22] 张硕俨, 陆洋. 基于地形匹配的直升机低空飞行前视告警方法[J]. 北京航空航天大学学报, 2019, 45(2): 340-346.

    ZHANG S Y, LU Y. Helicopter forward looking alert method for low-altitude flight based on terrain matching[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 340-346(in Chinese).
    [23] 赵龙, 颜廷君. 不同传感器精度下的地形辅助导航系统性能评估[J]. 北京航空航天大学学报, 2013, 39(8): 1016-1019.

    ZHAO L, YAN T J. Performance evaluation of a terrain-aided navigation system under different accuracy of sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8): 1016-1019(in Chinese).
    [24] 马丹山, 王明海, 聂锋, 等. 基于等高线和Hausdorff距离的地形匹配方法[J]. 弹箭与制导学报, 2009, 29(6): 81-84.

    MA D S, WANG M H, NIE F, et al. Terrain matching algorithm based on contour line and Hausdorff distance[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 81-84(in Chinese).
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  87
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-09-24
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答