留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定环境下多机器人协同区域搜索与覆盖方法

曹凯 陈阳泉 魏云博 高嵩 阎坤 丁羽菲

曹凯,陈阳泉,魏云博,等. 不确定环境下多机器人协同区域搜索与覆盖方法[J]. 北京航空航天大学学报,2026,52(2):404-414 doi: 10.13700/j.bh.1001-5965.2024.0379
引用本文: 曹凯,陈阳泉,魏云博,等. 不确定环境下多机器人协同区域搜索与覆盖方法[J]. 北京航空航天大学学报,2026,52(2):404-414 doi: 10.13700/j.bh.1001-5965.2024.0379
CAO K,CHEN Y Q,WEI Y B,et al. Multi-robot cooperative area search and coverage method in uncertain environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):404-414 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0379
Citation: CAO K,CHEN Y Q,WEI Y B,et al. Multi-robot cooperative area search and coverage method in uncertain environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):404-414 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0379

不确定环境下多机器人协同区域搜索与覆盖方法

doi: 10.13700/j.bh.1001-5965.2024.0379
基金项目: 

国家自然科学基金青年基金(62103315); 陕西省科技厅项目(2022GY-238,2022QFY01-16,2023-ZDLNY-61); 信息融合技术教育部重点实验室开放基金(202312-IFTKFKT-007);国家外国专家项目(H20251091)

详细信息
    通讯作者:

    E-mail:gaos@xatu.edu.cn

  • 中图分类号: TP242.6

Multi-robot cooperative area search and coverage method in uncertain environments

Funds: 

National Natural Science Foundation of China Youth Fund (62103315); Shaanxi Provincial Science and Technology Department Projects (2022GY-238,2022QFY01-16,2023-ZDLNY-61); Open Fund of the Ministry of Education Key Laboratory of Information Fusion Technology (202312-IFTKFKT-007); National Foreign Expert Program (H20251091)

More Information
  • 摘要:

    针对未知环境下的多机器人协同搜索和源定位问题,提出一种基于Voronoi图的分布式协同区域搜索和覆盖方法。该方法考虑机器人的实际尺寸和定位误差引起的碰撞问题,根据每个机器人的定位不确定性半径构造Voronoi缓冲区域以保障安全性。利用稀疏高斯过程回归和引入不确定正则项的质心Voronoi划分(CVT)算法重建未知浓度场的分布,并进行协同覆盖;提出一种自适应环境探索策略,实现无先验信息下的环境探索。仿真实验表明:所提方法能够快速完成对未知环境的探索,并准确定位到污染源的位置。

     

  • 图 1  位置误差范围

    Figure 1.  Position error range

    图 2  2种不同Voronoi划分

    Figure 2.  Two different Voronoi tessellation

    图 3  考虑不确定性的环境覆盖

    Figure 3.  Environment coverage considering uncertainty

    图 4  机器人搜索区域

    Figure 4.  Robot search area

    图 5  多污染源仿真初始环境

    Figure 5.  Initial environment for simulating multiple pollution sources

    图 6  多源密度函数下的UCB-CVT算法仿真

    Figure 6.  Simulation of UCB-CVT algorithm under multiple source density function

    图 7  UCB-CVT与G-CVT的评价指标对比

    Figure 7.  Comparison of evaluation metrics between UCB-CVT and G-CVT

    图 8  单污染源未知环境仿真

    Figure 8.  Single pollution source unknown environment simulation

    图 9  加入探索算法的仿真

    Figure 9.  Simulation with exploration algorithm

    图 10  加入探索策略与未加入探索策略的评价指标对比

    Figure 10.  Comparison of evaluation metrics with and without exploration strategy

    图 11  实验环境设置

    Figure 11.  Experimental environment setup

    图 12  TurtleBot3编队实验

    Figure 12.  TurtleBot3 formation experiment

    表  1  2种算法的运行时间

    Table  1.   Runtime of two algorithms

    算法 运行时间/s
    G-CVT 583.79
    UCB-CVT 239.53
    下载: 导出CSV
  • [1] JIANG M R, LIAO Y, GUO X, et al. A comparative experimental study of two multi-robot olfaction methods: towards locating time-varying indoor pollutant sources[J]. Building and Environment, 2022, 207: 108560.
    [2] 段安娜, 周锐, 邸斌. 考虑先验信息的多机器人重点区域协同覆盖[J]. 北京航空航天大学学报, 2023, 49(6): 1479-1486.

    DUAN A N, ZHOU R, DI B. Multi-robot cooperative coverage of key regions considering prior information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1479-1486 (in Chinese).
    [3] FU Z J, CHEN Y M, DING Y J, et al. Pollution source localization based on multi-UAV cooperative communication[J]. IEEE Access, 2019, 7: 29304-29312. doi: 10.1109/ACCESS.2019.2900475
    [4] 宁宇铭, 李团结, 姚聪, 等. 基于快速扩展随机树-贪婪边界搜索的多机器人协同空间探索方法[J]. 机器人, 2022, 44(6): 708-719.

    NING Y M, LI T J, YAO C, et al. Multi-robot cooperative space exploration method based on rapidly-exploring random trees and greedy frontier-based exploration[J]. Robot, 2022, 44(6): 708-719 (in Chinese).
    [5] FRANCIS A, LI S, GRIFFITHS C, et al. Gas source localization and mapping with mobile robots: a review[J]. Journal of Field Robotics, 2022, 39(8): 1341-1373. doi: 10.1002/rob.22109
    [6] TRAN V P, GARRATT M A, KASMARIK K, et al. Dynamic frontier-led swarming: multi-robot repeated coverage in dynamic environments[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(3): 646-661.
    [7] EL ROMEH A, MIRJALILI S. Multi-robot exploration of unknown space using combined meta-heuristic salp swarm algorithm and deterministic coordinated multi-robot exploration[J]. Sensors, 2023, 23(4): 2156.
    [8] CHOUDHURY S, GUPTA J K, KOCHENDERFER M J, et al. Dynamic multi-robot task allocation under uncertainty and temporal constraints[J]. Autonomous Robots, 2022, 46(1): 231-247. doi: 10.1007/s10514-021-10022-9
    [9] GUL F, MIR A, MIR I, et al. A centralized strategy for multi-agent exploration[J]. IEEE Access, 2022, 10: 126871-126884. doi: 10.1109/ACCESS.2022.3218653
    [10] ZHAO M, LU H, CHENG S, et al. A multi-robot cooperative exploration algorithm considering working efficiency and working load[J]. Applied Soft Computing, 2022, 128: 109482. doi: 10.1016/j.asoc.2022.109482
    [11] HONG L, CUI W C, CHEN H. A novel multi-robot task allocation model in marine plastics cleaning based on replicator dynamics[J]. Journal of Marine Science and Engineering, 2021, 9(8): 879.
    [12] JANG H, PARK M, OH H. Improved Socialtaxis for information-theoretic source search using cooperative multiple agents in turbulent environments[J]. Expert Systems with Applications, 2023, 225: 120033. doi: 10.1016/j.eswa.2023.120033
    [13] LI H, YUAN J, YUAN H. An active olfaction approach using deep reinforcement learning for indoor attenuation odor source localization[J]. IEEE Sensors Journal, 2024, 24(9): 14561-14572. doi: 10.1109/JSEN.2024.3373610
    [14] AN S, PARK M, OH H. Receding-horizon RRT-Infotaxis for autonomous source search in urban environments[J]. Aerospace Science and Technology, 2022, 120: 107276. doi: 10.1016/j.ast.2021.107276
    [15] AL REDWAN NEWAZ A, ALSAYEGH M, ALAM T, et al. Decentralized multi-robot information gathering from unknown spatial fields[J]. IEEE Robotics and Automation Letters, 2023, 8(5): 3070-3077. doi: 10.1109/LRA.2023.3264720
    [16] LIU Y, HARVEY C M, HAMLYN F E, et al. Bayesian estimation and reconstruction of marine surface contaminant dispersion[J]. Science of the Total Environment, 2024, 907: 167973. doi: 10.1016/j.scitotenv.2023.167973
    [17] JIA H Y, KIKUMOTO H. Line source estimation of environmental pollutants using super-Gaussian geometry model and Bayesian inference[J]. Environmental Research, 2021, 194: 110706. doi: 10.1016/j.envres.2020.110706
    [18] JABEEN M, MENG Q H, JING T, et al. Robot odor source localization in indoor environments based on gradient adaptive extremum seeking search[J]. Building and Environment, 2023, 229: 109983. doi: 10.1016/j.buildenv.2023.109983
    [19] XIAO D H, WANG Y, CHENG Z. Agent-based autonomous pollution source localization for complex environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(10): 9481-9489. doi: 10.1007/s12652-020-02686-5
    [20] SAADAOUI H, EL BOUANANI F. A local PSO-based algorithm for cooperative multi-UAV pollution source localization[J]. IEEE Access, 2022, 10: 106436-106450. doi: 10.1109/ACCESS.2022.3212079
    [21] ZHU H B, WANG Y B, DU C J, et al. A novel odor source localization system based on particle filtering and information entropy[J]. Robotics and Autonomous Systems, 2020, 132: 103619. doi: 10.1016/j.robot.2020.103619
    [22] 曹凯, 陈阳泉, 高嵩, 等. 基于健康管理的多机器人覆盖控制[J]. 传感技术学报, 2022, 35(7): 902-912.

    CAO K, CHEN Y Q, GAO S, et al. Multi-agent coverage control under health management[J]. Chinese Journal of Sensors and Actuators, 2022, 35(7): 902-912(in Chinese).
    [23] ZHAO Y, CHEN B, WANG X H, et al. A deep reinforcement learning based searching method for source localization[J]. Information Sciences, 2022, 588: 67-81. doi: 10.1016/j.ins.2021.12.041
    [24] HU J Y, NIU H L, CARRASCO J, et al. Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14413-14423. doi: 10.1109/TVT.2020.3034800
    [25] ABDULGHAFOOR A Z, BAKOLAS E. Multi-agent distributed optimal control for tracking large-scale multi-target systems in dynamic environments[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 2866-2879. doi: 10.1109/TCYB.2023.3302288
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  183
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-09-12
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答