留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MPC的多目标防撞优化算法

孙辉 张学东 孙连蔚 杨凯欣 王蕊

孙辉,张学东,孙连蔚,等. 基于MPC的多目标防撞优化算法[J]. 北京航空航天大学学报,2026,52(2):445-452 doi: 10.13700/j.bh.1001-5965.2024.0381
引用本文: 孙辉,张学东,孙连蔚,等. 基于MPC的多目标防撞优化算法[J]. 北京航空航天大学学报,2026,52(2):445-452 doi: 10.13700/j.bh.1001-5965.2024.0381
SUN H,ZHANG X D,SUN L W,et al. MPC-based multi-objective collision avoidance optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):445-452 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0381
Citation: SUN H,ZHANG X D,SUN L W,et al. MPC-based multi-objective collision avoidance optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):445-452 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0381

基于MPC的多目标防撞优化算法

doi: 10.13700/j.bh.1001-5965.2024.0381
基金项目: 

天津市重点研发计划(22YFZCSN00210)

详细信息
    通讯作者:

    E-mail:kxyang@163.com

  • 中图分类号: V221+.3;TB553

MPC-based multi-objective collision avoidance optimization algorithm

Funds: 

Key Research and Development Program of Tianjin, China (22YFZCSN00210)

More Information
  • 摘要:

    为避免飞机滑行时追尾风险并兼顾乘客的舒适性,提出一种基于模型预测控制(MPC)的多目标防撞优化算法。建立向运动学模型,考虑飞机滑行的安全性和乘客的舒适性设计目标函数及约束;以相对速度和间距作为参数,设计变权重函数,将其引入到MPC中,优化安全性权重,利用序列二次规划(SQP)算法对变权重MPC策略进行求解得到期望加速度,并对变权重MPC的稳定性进行分析。通过仿真实验验证所提算法在典型工况下的防撞效果,实验结果表明:所提算法在实现减速防撞的同时,优化了加速度变化幅度,提高了乘客舒适性。

     

  • 图 1  飞机纵向运动示意图

    Figure 1.  Schematic diagram of longitudinal movement of aircraft

    图 2  控制系统结构

    Figure 2.  Control system structure

    图 3  前机减速仿真结果

    Figure 3.  Simulation results of front engine deceleration taxiing

    图 4  跟随滑行仿真结果

    Figure 4.  Follow-slip simulation results

    表  1  仿真参数[17]

    Table  1.   Simulation parameters[17]

    固定
    时距Th/s
    惯性环节
    增益K
    惯性时间
    常数$\tau $
    采样时间Ts/s 预测时域p 控制时域m
    2 1 1 0.1 15 1
    下载: 导出CSV
  • [1] 中国民用航空局发展规划司. 2022年全国民用运输机场生产统计公报[EB/OL]. (2023-03-16)[2024-05-21]. http://app.caac.gov.cn/XXGK/XXGK/TJSJ/202303/t20230317_217609.html.

    Department of Development Planning, Civil Aviation Administration of China. 2022 national civil transportation airport production statistics bulletin[EB/OL]. (2023-03-16)[2024-05-21]. http://app.caac.gov.cn/XXGK/XXGK/TJSJ/202303/t20230317_217609.html(in Chinese).
    [2] GUO B, WANG Z J, PAN Y J, et al. The control of the aircraft ground collision or scratch risk[J]. Civil Aviation Management, 2017, 2: 105-112.
    [3] 何仁, 冯海鹏. 自动紧急制动(AEB)技术的研究与进展[J]. 汽车安全与节能学报, 2019, 10(1): 1-15.

    HE R, FENG H P. Research and development of autonomous emergency brake (AEB) technology[J]. Journal of Automotive Safety and Energy, 2019, 10(1): 1-15(in Chinese).
    [4] 胡远志, 吕章洁, 刘西. 基于PreScan的AEB系统纵向避撞算法及仿真验证[J]. 汽车安全与节能学报, 2017, 8(2): 136-142.

    HU Y Z, LV Z J, LIU X. Algorithm and simulation verification of longitudinal collision avoidance for autonomous emergency break(AEB) system based on PreScan[J]. Journal of Automotive Safety and Energy, 2017, 8(2): 136-142(in Chinese).
    [5] BELLA F, RUSSO R. A collision warning system for rear-end collision: a driving simulator study[J]. Procedia - Social and Behavioral Sciences, 2011, 20: 676-686. doi: 10.1016/j.sbspro.2011.08.075
    [6] 谈东奎, 胡港君, 朱波, 等. 考虑预期功能安全的智能汽车自动紧急制动系统[J]. 汽车工程, 2022, 44(6): 799-807.

    TAN D K, HU G J, ZHU B, et al. Intelligent vehicle autonomous emergency braking system considering safety of the intended functionality[J]. Automotive Engineering, 2022, 44(6): 799-807(in Chinese).
    [7] 兰凤崇, 余蒙, 李诗成, 等. 考虑预碰撞时间的自动紧急制动系统分层控制策略研究[J]. 汽车工程, 2020, 42(2): 206-214.

    LAN F C, YU M, LI S C, et al. Research on hierarchical control strategy for automatic emergency braking system with consideration of time-to-collision[J]. Automotive Engineering, 2020, 42(2): 206-214(in Chinese).
    [8] 姜虹, 李峰. 不同路面条件下高速公路的停车视距建模与安全车速分析[J]. 西安工业大学学报, 2012, 32(1): 25-30.

    JIANG H, LI F. Modeling of stopping sight distance and analysis of safe speed on the freeway with different road conditions[J]. Journal of Xi’an Technological University, 2012, 32(1): 25-30(in Chinese).
    [9] LUO Q, CHEN X Q, YUAN J, et al. Study and simulation analysis of vehicle rear-end collision model considering driver types[J]. Journal of Advanced Transportation, 2020, 2020(1): 7878656.
    [10] KIM H, KIM D, SHU I, et al. Time-varying parameter adaptive vehicle speed control[J]. IEEE Transactions on Vehicular Technology, 2015, 65(2): 581-588.
    [11] ZHANG R H, LI K N, HE Z C, et al. Advanced emergency braking control based on a nonlinear model predictive algorithm for intelligent vehicles[J]. Applied Sciences, 2017, 7(5): 504. doi: 10.3390/app7050504
    [12] 杨智博. 协同舒适性的自动驾驶汽车接管信号安全性测试方法研究[D]. 北京: 机械科学研究总院, 2022.

    YANG Z B. Research on the safety testing method of takeover signal for self-driving cars with cooperative comfort[D]. Beijing: Research Institute of Mechanical Sciences, 2022(in Chinese) .
    [13] LIU X H, SONG J, YU L Y, et al. Study on ride comfort in post-braking phase based on brake-by-wire system[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(2-3): 381-392. doi: 10.1177/09544070221079168
    [14] 刘永涛, 刘传攀, 刘湘安, 等. 基于自适应采样时间MPC的自动紧急制动系统[J]. 汽车工程, 2023, 45(1): 32-41.

    LIU Y T, LIU C P, LIU X A et al. Automatic emergency braking system based on model predictive control with adaptive sampling time[J]. Automotive Engineering, 2023, 45(1): 32-41(in Chinese) .
    [15] 中华人民共和国交通运输部. 民用航空安全管理规定[EB/OL]. (2018-02-13)[2024-05-25]. http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201803/t20180313_55750.html.

    Ministry of Transport of the People's Republic of China . Civil aviation safety management regulations[EB/OL]. (2018-02-13)[2024-05-25]. http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201803/t20180313_55750.html.
    [16] 白晨光. 基于模糊MPC的商用车自适应巡航控制策略研究[D]. 长春: 吉林大学, 2022.

    BAI C G. Research on adaptive cruise control strategy for commercial vehicles based on fuzzy MPC[D]. Changchun: Jilin University, 2022(in Chinese).
    [17] GONDHALEKAR R, DASSAU E, DOYLE F J. Velocity-weighting & velocity-penalty MPC of an artificial pancreas: Improved safety & performance[J]. Automatica, 2018, 91: 105-117. doi: 10.1016/j.automatica.2018.01.025
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  77
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-10-16
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答