留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑攻击时间和视线角度约束的预定时间收敛协同制导方法

常亚南 王先至 李国飞

常亚南,王先至,李国飞. 考虑攻击时间和视线角度约束的预定时间收敛协同制导方法[J]. 北京航空航天大学学报,2026,52(2):561-569 doi: 10.13700/j.bh.1001-5965.2024.0395
引用本文: 常亚南,王先至,李国飞. 考虑攻击时间和视线角度约束的预定时间收敛协同制导方法[J]. 北京航空航天大学学报,2026,52(2):561-569 doi: 10.13700/j.bh.1001-5965.2024.0395
CHANG Y N,WANG X Z,LI G F. Prescribed-time convergent cooperative guidance method with impact time and line-of-sight angle constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):561-569 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0395
Citation: CHANG Y N,WANG X Z,LI G F. Prescribed-time convergent cooperative guidance method with impact time and line-of-sight angle constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):561-569 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0395

考虑攻击时间和视线角度约束的预定时间收敛协同制导方法

doi: 10.13700/j.bh.1001-5965.2024.0395
基金项目: 

国家自然科学基金(62373304,62003021);中国科协青年人才托举工程(YESS20230443);中国高校产学研创新基金(2021ZYA02009);陕西秦创原引用高层次创新创业人才项目(QCYRCXM-2022-136);陕西省高校科协青年人才托举计划(XXJS202218);中央高校基本科研业务费专项资金(D5000210830)

详细信息
    通讯作者:

    E-mail:liguofei1@126.com

  • 中图分类号: V448

Prescribed-time convergent cooperative guidance method with impact time and line-of-sight angle constraints

Funds: 

National Natural Science Foundation of China (62373304,62003021); Young Elite Scientist Sponsorship Program by CAST (YESS20230443); China Higher Education Institution Industry-University-Research Innovation Fund (2021ZYA02009); Shaanxi Qinchuangyuan High-level Innovation and Entrepreneurship Talent Project (QCYRCXM-2022-136); Young Talent Fund of University Association for Science and Technology in Shaanxi, China (XXJS202218); The Fundamental Research Funds for the Central Universities (D5000210830)

More Information
  • 摘要:

    基于预定时间收敛一致性理论,设计多飞行器区域封控约束协同拦截制导律。视线(LOS)方向设计预定时间收敛协同制导律,使多个飞行器命中时间误差和命中时间一致性误差收敛到零,命中时间趋于一致,满足指定时间同时命中要求;视线法向结合滑模控制方法设计预定时间收敛滑模面和视线角约束制导律,使各飞行器视线角误差、视线角速率收敛到零,实现多个飞行器按各自指定视线角命中目标,满足期望视线角度要求。视线方向和视线法向的设计使预定时间收敛协同制导律能够同时满足攻击时间和视线角度的双重约束。理论分析表明,所设计的制导方法可保证多飞行器以期望视线角度同时命中目标。仿真结果验证了所提方法的正确性和有效性。

     

  • 图 1  多飞行器目标相对运动关系

    Figure 1.  The relative motion relationship of multi-vehicle and target

    图 2  飞行器通信拓扑

    Figure 2.  The communication topology of vehicles

    图 3  场景1飞行器和目标轨迹

    Figure 3.  The trajectory of vehicles and target in scene 1

    图 4  场景1命中时间误差/一致性误差

    Figure 4.  The impact time error/consistency error in scene 1

    图 5  场景1飞行器目标距离

    Figure 5.  The distance from vehicles to target in scene 1

    图 6  场景1视线角速率

    Figure 6.  Line-of-sight angle rate in scene 1

    图 7  场景1视线角

    Figure 7.  Line-of-sight angle in scene 1

    图 8  场景1视线法向加速度

    Figure 8.  The acceleration in line-of-sight normal direction in scene 1

    图 9  场景1视线方向加速度

    Figure 9.  The acceleration in line-of-sight direction in scene 1

    图 10  场景2飞行器和目标轨迹

    Figure 10.  The trajectory of vehicles and target in scene 2

    图 11  场景2命中时间误差/一致性误差

    Figure 11.  The impact time error/consistency error in scene 2

    图 12  场景2飞行器目标距离

    Figure 12.  The distance from vehicles to target in scene 2

    图 13  场景2视线角速率

    Figure 13.  Line-of-sight angle rate in scene 2

    图 14  场景2视线角

    Figure 14.  Line-of-sight angle in scene 2

    图 15  场景2视线法向加速度

    Figure 15.  The acceleration in line-of-sight normal direction in scene 2

    图 16  场景2视线方向加速度

    Figure 16.  The acceleration in line-of-sight direction in scene 2

    表  1  场景1飞行器和目标初始参数

    Table  1.   The initial parameters of vehicle and target in scene 1

    飞行器/目标 位置/m 弹道倾角/(°) 速度/(m·s−1)
    飞行器1 (0, 0) 45 300
    飞行器2 (−50, 600) 30 300
    飞行器3 (−100, 1000) 45 300
    飞行器4 (600, −50) 45 300
    飞行器5 (1200, −100) 45 300
    目标 (10000, 1000) 150 100
    下载: 导出CSV

    表  2  场景2飞行器和目标初始参数

    Table  2.   The initial parameters of vehicle and target in scene 2

    飞行器/目标 位置/m 弹道倾角/(°) 速度/(m·s−1)
    飞行器1 (0, 0) 45 300
    飞行器2 (−50, 600) 30 350
    飞行器3 (−100, 1000) 45 400
    飞行器4 (600, −50) 45 300
    飞行器5 (1200, −500) 30 300
    目标 (10000, 5000) 0 100
    下载: 导出CSV
  • [1] 周敏, 王一鸣, 郭建国, 等. 多弹协同末制导方法综述[J]. 航空兵器, 2023, 30(4): 17-25.

    ZHOU M, WANG Y M, GUO J G, et al. A survey of multi-missile cooperative terminal guidance[J]. Aero Weaponry, 2023, 30(4): 17-25(in Chinese).
    [2] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6): 1605-1611. doi: 10.3321/j.issn:1000-6893.2008.06.031

    ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1605-1611(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.06.031
    [3] 张友安, 马国欣, 王兴平. 多导弹时间协同制导: 一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6): 1109-1118.

    ZHANG Y A, MA G X, WANG X P. Time-cooperative guidance for multi-missiles: a leader-follower strategy[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1109-1118(in Chinese).
    [4] LI G F, WANG X Z, ZUO Z Y, et al. Fault-tolerant formation control for leader-follower flight vehicles under malicious attacks[EB/OL]. (2024-04-22)[2024-06-01]. https://ieeexplore.ieee.org/document/10506534.
    [5] LI G F, ZUO Z Y. Robust leader-follower cooperative guidance under false-data injection attacks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4511-4524. doi: 10.1109/TAES.2023.3242637
    [6] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266. doi: 10.1109/TCST.2005.863655
    [7] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 275-280. doi: 10.2514/1.40136
    [8] 李国飞, 李博皓, 吴云洁, 等. 多群组飞行器攻击时间控制协同制导方法[J]. 宇航学报, 2023, 44(1): 110-118.

    LI G F, LI B H, WU Y J, et al. Cooperative guidance law with impact time control for clusters of flight vehicles[J]. Journal of Astronautics, 2023, 44(1): 110-118(in Chinese).
    [9] 李国飞, 朱国梁, 吕金虎, 等. 主-从多飞行器三维分布式协同制导方法[J]. 航空学报, 2021, 42(11): 524926.

    LI G F, ZHU G L, LYU J H, et al. Three-dimensional distributed cooperative guidance law for multiple leader-follower flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524926(in Chinese).
    [10] LI G F, LV J H, ZHU G L, et al. Distributed observer-based cooperative guidance with appointed impact time and collision avoidance[J]. Journal of the Franklin Institute, 2021, 358(14): 6976-6993. doi: 10.1016/j.jfranklin.2021.06.030
    [11] KIM M, JUNG B, HAN B, et al. Lyapunov-based impact time control guidance laws against stationary targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1111-1122. doi: 10.1109/TAES.2014.130717
    [12] PARK B G, KIM T H, TAHK M J. Optimal impact angle control guidance law considering the seeker’s field-of-view limits[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(8): 1347-1364. doi: 10.1177/0954410012452367
    [13] 周慧波. 基于有限时间和滑模理论的导引律及多导弹协同制导研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHOU H B. Study on guidance law and cooperative guidance for multi-missiles based on finite-time and sliding mode theory[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [14] ZHAO J L, ZHOU J. Fixed-time second order sliding mode guidance law for interceptors with impact angle constraints[C]//Proceedings of the 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2020: 1010-1014.
    [15] ZHANG M J, MA J J. Adaptive fixed-time cooperative intercept guidance law with line-of-sight angle constraint[C]//Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2019: 1992-1998.
    [16] LI G F, WU Y J. Adaptive cooperative guidance with seeker-less followers: a position coordination-based framework[J]. ISA Transactions, 2023, 143: 168-176. doi: 10.1016/j.isatra.2023.09.024
    [17] KUMAR S R, RAO S, GHOSE D. Non-singular terminal sliding mode guidance and control with terminal angle constraints for non-maneuvering targets[C]//Proceedings of the 2012 12th International Workshop on Variable Structure Systems. Piscataway: IEEE Press, 2012: 291-296.
    [18] 景亮. 多拦截弹时间收敛协同制导律研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    JING L. Reserch on time convergence cooperative guidence law for mutiple interceptor[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
    [19] 田野, 蔡远利, 邓逸凡. 一种带时间协同和角度约束的多导弹三维协同制导律[J]. 控制理论与应用, 2022, 39(5): 788-798. doi: 10.7641/CTA.2021.10245

    TIAN Y, CAI Y L, DENG Y F. A 3D cooperative guidance law for multiple missiles with line-of-sight angle constraint[J]. Control Theory & Applications, 2022, 39(5): 788-798(in Chinese). doi: 10.7641/CTA.2021.10245
    [20] CHEN Z Y, YU J L, DONG X W, et al. Three-dimensional cooperative guidance strategy and guidance law for intercepting highly maneuvering target[J]. Chinese Journal of Aeronautics, 2021, 34(5): 485-495. doi: 10.1016/j.cja.2020.12.014
    [21] 王鹏, 赵石磊, 陈万春. 基于可达区在线预测的GPI中制导协同拦截策略[J]. 北京航空航天大学学报, 2024, 50(11): 3463-3476. doi: 10.13700/j.bh.1001-5965.2022.0856

    WANG P, ZHAO S L, CHEN W C. Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(11): 3463-3476(in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0856
    [22] 于江龙, 董希旺, 李清东, 等. 拦截机动目标的分布式协同围捕制导方法[J]. 航空学报, 2022, 43(9): 325817.

    YU J L, DONG X W, LI Q D, et al. Distributed cooperative encirclement hunting guidance method for intercepting maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325817(in Chinese).
    [23] ZHANG L, WEI C Z, JING L, et al. Fixed-time sliding mode attitude tracking control for a submarine-launched missile with multiple disturbances[J]. Nonlinear Dynamics, 2018, 93(4): 2543-2563. doi: 10.1007/s11071-018-4341-8
    [24] LIN Q, ZHOU Y J, JIANG G P, et al. Prescribed-time containment control based on distributed observer for multi-agent systems[J]. Neurocomputing, 2021, 431: 69-77. doi: 10.1016/j.neucom.2020.12.030
    [25] 池海红, 丁栖航, 张国良. 预定时间多导弹三维协同制导律[J]. 宇航学报, 2023, 44(8): 1238-1250. doi: 10.3873/j.issn.1000-1328.2023.08.012

    CHI H H, DING X H, ZHANG G L. Three-dimensional cooperative guidance law for multiple missiles with predefined-time convergence[J]. Journal of Astronautics, 2023, 44(8): 1238-1250(in Chinese). doi: 10.3873/j.issn.1000-1328.2023.08.012
    [26] SÁNCHEZ-TORRES J D, SANCHEZ E N, LOUKIANOV A G. Predefined-time stability of dynamical systems with sliding modes[C]//Proceedings of the 2015 American Control Conference. Piscataway: IEEE Press, 2015: 5842-5846.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  122
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-09-20
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答