留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应神经网络的四旋翼无人机固定时间指令滤波控制

聂黎 李臣亮 刘旺魁 沈海东 刘燕斌 陈金宝

聂黎,李臣亮,刘旺魁,等. 基于自适应神经网络的四旋翼无人机固定时间指令滤波控制[J]. 北京航空航天大学学报,2026,52(2):589-598 doi: 10.13700/j.bh.1001-5965.2024.0403
引用本文: 聂黎,李臣亮,刘旺魁,等. 基于自适应神经网络的四旋翼无人机固定时间指令滤波控制[J]. 北京航空航天大学学报,2026,52(2):589-598 doi: 10.13700/j.bh.1001-5965.2024.0403
NIE L,LI C L,LIU W K,et al. Adaptive neural network based on fixed-time command-filtered control for quadrotor unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):589-598 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0403
Citation: NIE L,LI C L,LIU W K,et al. Adaptive neural network based on fixed-time command-filtered control for quadrotor unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):589-598 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0403

基于自适应神经网络的四旋翼无人机固定时间指令滤波控制

doi: 10.13700/j.bh.1001-5965.2024.0403
基金项目: 

国家自然科学基金(52402475,52272369);中国航天科技集团有限公司第八研究院产学研合作基金(SAST2023-007);中央高校基本科研业务费专项资金(NS2024053)

详细信息
    通讯作者:

    E-mail:shenhaidong@nuaa.edu.cn

  • 中图分类号: V279;V249.1

Adaptive neural network based on fixed-time command-filtered control for quadrotor unmanned aerial vehicles

Funds: 

National Natural Science Foundation of China (52402475,52272369); the China Aerospace Science and Technology Corporation Eighth Research Institute Industry-University-Research Cooperation Fund (SAST2023-007); the Fundamental Research Funds for the Central Universities (NS2024053)

More Information
  • 摘要:

    针对四旋翼无人机在外部扰动和模型不确定性下的姿态跟踪问题,设计了一种基于自适应径向基函数(RBF)神经网络的固定时间指令滤波控制方法。设计了一种基于双曲正切函数的固定时间指令滤波器,避免了虚拟控制律推导过程中存在的“微分爆炸”问题,消除了传统滤波器由于引入分数阶而产生的奇异现象;利用RBF神经网络对模型不确定性进行逼近,并根据跟踪偏差设计了神经网络权值的自适应调节律,改善了在线逼近效果;此外,结合反步法和干扰观测器,设计了四旋翼无人机固定时间控制律,通过干扰观测器对外界扰动进行估计和补偿,实现了对目标姿态的快速、准确跟踪。基于Lyapunov理论严格证明了该方法的固定时间稳定性,并通过数值仿真验证了所提方法的有效性。

     

  • 图 1  四旋翼无人机的参考坐标系

    Figure 1.  Reference coordinate system for quadrotor unmanned aerial vehicles

    图 2  基于RBF神经网络的固定时间反步控制结构框图

    Figure 2.  Block diagram of the structure of fixed-time backstepping control based on RBF neural network

    图 3  虚拟信号导数估计

    Figure 3.  Estimation of virtual signal derivative

    图 4  姿态跟踪误差对比

    Figure 4.  Attitude tracking error comparison

    图 5  控制输入信号对比

    Figure 5.  Control input signal comparison

    图 6  神经网络逼近误差

    Figure 6.  Approximate error of neural network

    图 7  外部扰动与干扰观测器估计值

    Figure 7.  External disturbance and interference in observer estimate

    图 8  内外扰动下的姿态跟踪误差

    Figure 8.  Attitude tracking error under internal and external disturbances

    图 9  内外扰动下的控制输入信号

    Figure 9.  The control input signal under internal and external disturbances

  • [1] 乔伟根. 干扰条件下四旋翼无人机的轨迹跟踪控制[D]. 太原: 中北大学, 2022.

    QIAO W G. Trajectory tracking control of quad-rotor under interference conditions[D]. Taiyuan: North University of China, 2022(in Chinese).
    [2] 李鸿一, 王琰, 姚得银, 等. 基于事件触发机制的多四旋翼无人机鲁棒自适应滑模姿态控制[J]. 中国科学: 信息科学, 2023, 53(1): 66-80.

    LI H Y, WANG Y, YAO D Y, et al. Robust adaptive sliding mode attitude control of MQUAVs based on event-triggered mechanism[J]. Scientia Sinica(Informationis), 2023, 53(1): 66-80(in Chinese).
    [3] 王栋, 鲜斌. 倾转式三旋翼无人机的自适应鲁棒容错控制[J]. 控制理论与应用, 2020, 37(4): 784-792.

    WANG D, XIAN B. Adaptive robust fault tolerant control of the tilt tri-rotor unmanned aerial vehicle[J]. Control Theory & Applications, 2020, 37(4): 784-792(in Chinese).
    [4] 薛晶勇, 王斌锐. 指数型时变增益反步滑模四旋翼姿态控制[J]. 控制工程, 2022, 29(5): 935-943.

    XUE J Y, WANG B R. Backstepping sliding mode attitude controller of exponential varying-time gain for quadrotor[J]. Control Engineering of China, 2022, 29(5): 935-943(in Chinese).
    [5] 刘晨阳, 吴大伟, 郭一泽, 等. 不确定强耦合下四旋翼姿态鲁棒自适应控制[J]. 航空学报, 2023, 44(增刊1): 727645.

    LIU C Y, WU D W, GUO Y Z, et al. Robust adaptive control of four-rotor attitude under uncertain strong coupling[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(Sup 1): 727645(in Chinese).
    [6] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899. doi: 10.1109/TAC.2000.880994
    [7] NAI Y Q, YANG Q Y, ZHANG Z Q. Adaptive neural output feedback compensation control for intermittent actuator faults using command-filtered backstepping[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3497-3511. doi: 10.1109/TNNLS.2019.2944897
    [8] 赵海斌, 李伶, 孙胜. 基于模糊控制的有限时间收敛制导律[J]. 航天控制, 2014, 32(3): 33-37.

    ZHAO H B, LI L, SUN S. Guidance law with finite time convergence based on fuzzy logic[J]. Aerospace Control, 2014, 32(3): 33-37(in Chinese).
    [9] 张远, 黄万伟, 路坤锋, 等. 高超声速变外形飞行器建模与有限时间控制[J]. 北京航空航天大学学报, 2022, 48(10): 1979-1993.

    ZHANG Y, HUANG W W, LU K F, et al. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993(in Chinese).
    [10] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE transactions on Automatic Control, 2011, 57(8): 2106-2110.
    [11] 侯书超, 赵林. 基于命令滤波反步法的机械臂系统固定时间自适应跟踪控[J]. 自动化与仪表, 2022, 37(7): 35-42.

    HOU S C, ZHAO L. Fixed-time adaptive tracking control of manipulator system based on command filtering backstepping method[J]. Automation& Instrumentation, 2022, 37(7): 35-42(in Chinese).
    [12] 夏笠城, 王姝旸, 张晶, 等. 基于双频扩张状态观测器的无人机抗扰控制[J]. 北京航空航天大学学报, 2023, 49(5): 1201-1208.

    XIA L C, WANG S Y, ZHANG J, et al. Bi-bandwidth extended state observer based disturbance rejection control method and its application on UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1201-1208(in Chinese).
    [13] 鄢化彪, 徐炜宾, 黄绿娥. 基于改进ADRC的四旋翼姿态控制器设计[J]. 北京航空航天大学学报, 2023, 49(12): 3283-3292.

    YAN H B, XU W B, HUANG L E. Design of quadrotor attitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3283-3292(in Chinese).
    [14] ZHANG H C, SONG A G, LI H J, et al. Adaptive finite-time control scheme for teleoperation with time-varying delay and uncertainties[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1552-1566. doi: 10.1109/TSMC.2020.3032295
    [15] 董泽洪, 李颖晖, 吕茂隆, 等. 迎角受限的高超声速飞行器固定时间鲁棒控制[J]. 宇航学报, 2022, 43(12): 1708-1721.

    DONG Z H, LI Y H, LV M L, et al. Fixed-time robust control for hypersonic flight vehicle with constrained angle of attack[J]. Journal of Astronautics, 2022, 43(12): 1708-1721(in Chinese).
    [16] SHARMA M, KAR I. Finite time disturbance observer based geometric control of quadrotors[J]. IFAC-PapersOnLine, 2020, 53(1): 295-300. doi: 10.1016/j.ifacol.2020.06.050
    [17] YAN K, WU Q X. Adaptive tracking flight control for unmanned autonomous helicopter with full state constraints and actuator faults[J]. ISA transactions, 2022, 128: 32-46.
    [18] XU L X, MA H J, GUO D, et al. Backstepping sliding-mode and cascade active disturbance rejection control for a quadrotor UAV[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2743-2753. doi: 10.1109/TMECH.2020.2990582
    [19] ZHOU X, GAO C, LI Z G, et al. Observer-based adaptive fuzzy finite-time prescribed performance tracking control for strict-feedback systems with input dead-zone and saturation[J]. Nonlinear Dynamics, 2021, 103(2): 1645-1661. doi: 10.1007/s11071-020-06190-5
    [20] CHEN M, SHI P, LIM C C. Adaptive neural fault-tolerant control of a 3-DOF model helicopter system[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(2): 260-270. doi: 10.1109/TSMC.2015.2426140
    [21] POLYCARPOU M M. Stable adaptive neural control scheme for nonlinear systems[J]. IEEE Transactions on Automatic Control, 1996, 41(3): 447-451. doi: 10.1109/9.486648
    [22] QIAN C J, LIN W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization[J]. Systems & Control Letters, 2001, 42(3): 185-200.
    [23] WANG H Q, CHEN B, LIN C. Adaptive neural tracking control for a class of stochastic nonlinear systems[J]. International Journal of Robust and Nonlinear Control, 2014, 24(7): 1262-1280. doi: 10.1002/rnc.2943
    [24] ZHU Z, XIA Y Q, FU M Y. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. International Journal of Robust and Nonlinear Control, 2011, 21(6): 686-702. doi: 10.1002/rnc.1624
    [25] WANG H Q, LIU P X, ZHAO X D, et al. Adaptive fuzzy finite-time control of nonlinear systems with actuator faults[J]. IEEE Transactions on Cybernetics, 2020, 50(5): 1786-1797. doi: 10.1109/TCYB.2019.2902868
    [26] LIU S W, WANG H Q, LI T S. Fixed-time command-filtered composite adaptive neural fault-tolerant control for strict-feedback nonlinear systems[J]. ISA transactions, 2024, 145: 87-103. doi: 10.1016/j.isatra.2023.11.037
    [27] CUI G Z, YANG W, YU J P, et al. Fixed-time prescribed performance adaptive trajectory tracking control for a QUAV[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 69(2): 494-498.
    [28] 崔正阳, 王勇. 无人机固定时间路径跟踪容错制导控制[J]. 北京航空航天大学学报, 2021, 47(8): 1619-1627.

    CUI Z Y, WANG Y. Fault-tolerant fixed-time path following guidance control of UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1619-1627(in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  132
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 录用日期:  2024-06-21
  • 网络出版日期:  2024-09-10
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答