留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于星载GNSS-R技术监测湖泊水域面积变化

周志凌 管栋良 李思思 夏逸旻

周志凌,管栋良,李思思,等. 基于星载GNSS-R技术监测湖泊水域面积变化[J]. 北京航空航天大学学报,2025,51(12):4299-4309 doi: 10.13700/j.bh.1001-5965.2024.0411
引用本文: 周志凌,管栋良,李思思,等. 基于星载GNSS-R技术监测湖泊水域面积变化[J]. 北京航空航天大学学报,2025,51(12):4299-4309 doi: 10.13700/j.bh.1001-5965.2024.0411
ZHOU Z L,GUAN D L,LI S S,et al. Monitoring lake water area change based on spaceborne GNSS-R technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4299-4309 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0411
Citation: ZHOU Z L,GUAN D L,LI S S,et al. Monitoring lake water area change based on spaceborne GNSS-R technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4299-4309 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0411

基于星载GNSS-R技术监测湖泊水域面积变化

doi: 10.13700/j.bh.1001-5965.2024.0411
基金项目: 

国家重点研发计划(2021FBY3901301);国家自然科学基金面上项目(42271420);江苏省自然科学基金青年基金项目(BK20220366);江苏省自然资源厅科技创新项目经费资助(JSZRKJ202406)

详细信息
    通讯作者:

    E-mail:guan.dongliang@njtech.edu.cn

  • 中图分类号: P237

Monitoring lake water area change based on spaceborne GNSS-R technology

Funds: 

National Key Research and Development Program of China (2021FBY3901301); National Natural Science Foundation of China General Program (42271420); Natural Science Foundation for Young Scientist of Jiangsu Province, China (BK20220366); Funded by Science and Technology Innovation Project of Jiangsu Provincial Department of Natural Resources, China (JSZRKJ202406)

More Information
  • 摘要:

    鄱阳湖是中国第一大淡水湖,其水域面积变化对水资源管理、灾害防控和社会经济发展等多个方面具有重要的影响。利用星载全球导航卫星系统反射(GNSS-R)技术对湖泊水域面积进行估算。基于星载GNSS-R地表反射模型和GNSS-R卫星旋风卫星导航系统(CYGNSS)的观测数据,计算得到鄱阳湖区域的地表反射率;利用网格化插值并通过阈值法进行水域范围的识别;根据水体的格网数量及其空间分辨率进行水域面积计算。研究表明:基于星载GNSS-R技术提取的鄱阳湖水域面积与Sentinel-1卫星和Sentinel-2卫星图像处理得到的鄱阳湖水域面积之间存在显著的相似度,皮尔逊相关系数分别为0.91和0.94。以Sentinel-2卫星的结果为参考,基于CYGNSS和Sentinel-1卫星获取的鄱阳湖水域面积月平均偏差值分别为315.42 km2和271.45 km2,对应的月平均偏差百分比分别为17.2%和13.1%。进一步验证了星载GNSS-R技术在高时空分辨率的湖泊水域面积监测中的可靠性和应用前景,可为水资源管理和灾害防控等提供数据支持。

     

  • 图 1  鄱阳湖卫星图和边界矢量图

    Figure 1.  (a) Satellite image boundary vector and image of Poyang Lake

    图 2  基于星载GNSS-R水体识别方法总流程

    Figure 2.  Flowchart of water body identification method based on spaceborne GNSS-R

    图 3  基于CYGNSS卫星计算得到的2022年鄱阳湖地表反射率

    Figure 3.  Scatter plot of surface reflectance of Poyang Lake during 2022 based on CYGNSS satellite calculation

    图 4  修正后的6月和7月鄱阳湖地表反射率图

    Figure 4.  Scatter plot of surface reflectance correction in June and July

    图 5  基于CYGNSS卫星的2022年鄱阳湖地表反射率插值结果

    Figure 5.  Interpolation results of surface reflectance of Poyang Lake during 2022 based on CYGNSS satellite

    图 6  不同反射率阈值下,CYGNSS与Sentinel-1和Sentinel-2提取的鄱阳湖水域面积RMSE值

    Figure 6.  RMSE values of water area of Poyang Lake extracted by CYGNSS and Sentinel-1, Sentinel-2 under different reflectance thresholds

    图 7  不同反射率阈值下,CYGNSS与Sentinel-1卫星和Sentinel-2卫星提取的鄱阳湖水域面积RMSE值

    Figure 7.  RMSE values of water area of Poyang Lake extracted by CYGNSS and Sentinel-1, Sentinel-2 under different reflectance thresholds

    图 8  基于CYGNSS卫星的2022年鄱阳湖水体分离结果

    Figure 8.  Separation results of Poyang Lake water body in 2022 based on CYGNSS satellite

    图 9  基于星载CYGNSS卫星反演得到的鄱阳湖2022年的水域面积

    Figure 9.  Water area of Poyang Lake in 2022 based on spaceborne CYGNSS satellite

    图 10  基于Sentinel-1卫星影像数据的鄱阳湖水体分离结果

    Figure 10.  Separation results of Poyang Lake water body based on Sentinel-1 image data

    图 11  基于Sentinel-2卫星影像数据的鄱阳湖水体分离结果

    Figure 11.  Separation results of Poyang Lake water body based on Sentinel-2 image data

    图 12  基于Sentinel-1/ Sentinel-2卫星反演得到的鄱阳湖2022年水域面积

    Figure 12.  Sentinel-1/ Sentinel-2 image separation of water body area in Poyang Lake in 2022

    图 13  2022年鄱阳湖水域面积对比

    Figure 13.  Comparison of Poyang Lake water area in 2022

    图 14  基于星载GNSS-R技术提取与Sentinel-1/Sentinel-2卫星影像处理得到的鄱阳湖水域面积结果相似度分析

    Figure 14.  Similarity analysis between the Poyang Lake water area results extracted based on satellite GNSS-R technology and the Poyang Lake water area results obtained from Sentinel-1 /Sentinel-2 image processing

    图 15  基于CYGNSS、Sentinel-1卫星和Sentinel-2卫星获取的鄱阳湖水域面积之间的差值及差值百分比

    Figure 15.  Difference between water area of Poyang Lake and percentage of difference obtained based on CYGNSS, Sentinel-1 and Sentinel-2

  • [1] 宋利娟, 景海涛, 徐嘉慧, 等. 联合哨兵卫星系列雷达与光学影像的洞庭湖水域面积变化高时空分辨率监测[J]. 遥感学报, 2023, 27(11): 2516-2529. doi: 10.11834/jrs.20221562

    SONG L J, JING H T, XU J H, et al. High spatial and temporal resolution monitoring of water area changes of Dongting Lake by joint Sentinel satellite series of radar and optical images[J]. National Remote Sensing Bulletin, 2023, 27(11): 2516-2529(in Chinese). doi: 10.11834/jrs.20221562
    [2] 杨东凯, 张其善. GNSS反射信号处理基础与实践[M]. 北京: 电子工业出版社, 2012.

    YANG D K, ZHANG Q S. GNSS reflected signal processing: fundamentals and applications[M]. Beijing: Publishing House of Electronics Industry, 2012(in Chinese).
    [3] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-355.
    [4] JING C, NIU X L, DUAN C D, et al. Sea surface wind speed retrieval from the first Chinese GNSS-R mission: technique and preliminary results[J]. Remote Sensing, 2019, 11(24): 3013. doi: 10.3390/rs11243013
    [5] 布金伟, 余科根, 韩帅. 星载GNSS-R海浪有效波高反演模型构建[J]. 测绘学报, 2022, 51(9): 1920-1930. doi: 10.11947/j.issn.1001-1595.2022.9.chxb202209009

    BU J W, YU K G, HAN S. Construction of spaceborne GNSS-R ocean waves significant wave height retrieval model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1920-1930(in Chinese). doi: 10.11947/j.issn.1001-1595.2022.9.chxb202209009
    [6] WANG X L, HE X F, ZHANG Q, et al. Angle dependence analysis method to determine SNR arc applied to GNSS-MR sea level retrieval[J]. Acta Geodaetica et Cartographica Sinica, 2021, 4(2): 14-26.
    [7] 李婷, 张显云, 邓小东, 等. 顾及多径环境差异和粗差的GNSS-MR土壤湿度反演[J]. 遥感学报, 2021, 25(6): 1324-1337. doi: 10.11834/jrs.20219098

    LI T, ZHANG X Y, DENG X D, et al. GNSS-MR soil moisture retrieval considering the multipath environments differences and gross error[J]. National Remote Sensing Bulletin, 2021, 25(6): 1324-1337(in Chinese). doi: 10.11834/jrs.20219098
    [8] 陶庭叶, 李江洋, 朱勇超, 等. 阶段模型修正的星载GNSS-R土壤湿度反演方法[J]. 测绘学报, 2022, 51(9): 1942-1950. doi: 10.11947/j.issn.1001-1595.2022.9.chxb202209011

    TAO T Y, LI J Y, ZHU Y C, et al. Spaceborne GNSS-R for retrieving soil moisture based on the correction of stage model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1942-1950(in Chinese). doi: 10.11947/j.issn.1001-1595.2022.9.chxb202209011
    [9] 朱勇超. 星载GNSS-R海冰检测与海冰密集度反演方法研究[J]. 测绘学报, 2020, 49(12): 1643.

    ZHU Y C. Study of spaceborne GNSS-R for sea ice detection and sea ice concentration retrieval methods[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1643(in Chinese).
    [10] 陈国庆, 何秀凤, 王笑蕾, 等. 基于信号强度的多模多频GNSS-MR雪深反演研究[J]. 遥感学报, 2024, 28(09): 2240-2251.

    CHEN G Q, HE X F, WANG X L, et al. Multi-mode and multi-frequency GNSS-MR snow depth inversion based on signal strength[J]. National Remote Sensing Bulletin, 2024, 28(09): 2240-2251(in Chinese).
    [11] 管栋良, 梁子亮, 王勇. 地基GNSS-R在复杂地形条件下的积雪探测[J]. 地球物理学报, 2022, 65(11): 4236-4248. doi: 10.6038/cjg2022P0716

    GUAN D L, LIANG Z L, WANG Y. Snow detection under the complicated terrain conditions using the ground-based GNSS-R technique[J]. Chinese Journal of Geophysics, 2022, 65(11): 4236-4248(in Chinese). doi: 10.6038/cjg2022P0716
    [12] YU K G, LI Y W, CHANG X. Snow depth estimation based on combination of pseudorange and carrier phase of GNSS dual-frequency signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1817-1828. doi: 10.1109/TGRS.2018.2869284
    [13] ZHANG S C, ZHOU M L, WANG Y J, et al. Ground-based GPS used in the snow depth survey of Greenland[J]. Acta Geodaetica et Cartographica Sinica, 2021, 4(2): 47-55.
    [14] GERLEIN-SAFDI C, RUF C S. A CYGNSS-based algorithm for the detection of inland waterbodies[J]. Geophysical Research Letters, 2019, 46(21): 12065-12072. doi: 10.1029/2019GL085134
    [15] GHASEMIGOUDARZI P, HUANG W M, DE SILVA O, et al. Flash flood detection from CYGNSS data using the RUSBoost algorithm[J]. IEEE Access, 2020, 8: 171864-171881. doi: 10.1109/ACCESS.2020.3025302
    [16] AL-KHALDI M M, JOHNSON J T, GLEASON S, et al. Inland water body mapping using CYGNSS coherence detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7385-7394. doi: 10.1109/TGRS.2020.3047075
    [17] WAN W, LIU B J, ZENG Z Y, et al. Using CYGNSS data to monitor China’s flood inundation during typhoon and extreme precipitation events in 2017[J]. Remote Sensing, 2019, 11(7): 854. doi: 10.3390/rs11070854
    [18] YANG W T, GAO F, XU T H, et al. Daily flood monitoring based on spaceborne GNSS-R data: a case study on Henan, China[J]. Remote Sensing, 2021, 13(22): 4561. doi: 10.3390/rs13224561
    [19] ZHANG S C, MA Z M, LI Z H, et al. Using CYGNSS data to map flood inundation during the 2021 extreme precipitation in Henan Province, China[J]. Remote Sensing, 2021, 13(24): 5181.
    [20] YAN Q Y, HUANG W M, JIN S G, et al. Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data[J]. Remote Sensing of Environment, 2020, 247: 111944. doi: 10.1016/j.rse.2020.111944
    [21] DE ROO R D, ULABY F T. Bistatic specular scattering from rough dielectric surfaces[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 220-231. doi: 10.1109/8.277216
    [22] KURUM M, DESHPANDE M, JOSEPH A T, et al. SCoBi-Veg: a generalized bistatic scattering model of reflectometry from vegetation for signals of opportunity applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1049-1068. doi: 10.1109/TGRS.2018.2864631
    [23] VORONOVICH A G, ZAVOROTNY V U. Bistatic radar equation for signals of opportunity revisited[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1959-1968. doi: 10.1109/TGRS.2017.2771253
    [24] ZAVOROTNY V U, GLEASON S, CARDELLACH E, et al. Tutorial on remote sensing using GNSS bistatic radar of opportunity[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(4): 8-45. doi: 10.1109/MGRS.2014.2374220
    [25] BARTIER P M, KELLER C P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW)[J]. Computers & Geosciences, 1996, 22(7): 795-799.
    [26] RUF C. CYGNSS handbook[M]. Ann Arbor: University of Michigan Press, 2022.
    [27] 张云, 王雨, 周绍辉, 等. 星载GNSS-R检测太湖水华可行性分析[J]. 北京航空航天大学学报, 2024, 50(3): 695-705.

    ZHANG Y, WANG Y, ZHOU S H, et al. Analysis on feasibility of detecting water blooms in Taihu Lake with spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 695-705(in Chinese).
    [28] LIU M J, WANG J, ZHONG S L, et al. Quantitative evaluation of sea-ice disaster in Bohai sea based on GOCI and Sentinel-1[J]. Acta Geodaetica et Cartographica Sinica, 2021, 4(1): 49-55.
    [29] 张艳梅, 王萍, 罗想, 等. 利用Sentinel-1数据和SBAS-InSAR技术监测西安地表沉降[J]. 测绘通报, 2017(4): 93-97.

    ZHANG Y M, WANG P, LUO X, et al. Sentinel-1 data and SBAS-InSAR technology were used to monitor surface subsidence in Xi'an[J]. Bulletin of Surveying and Mapping, 2017(4): 93-97(in Chinese).
    [30] WANG Q M, SHI W Z, LI Z B, et al. Fusion of sentinel-2 images[J]. Remote Sensing of Environment, 2016, 187: 241-252. doi: 10.1016/j.rse.2016.10.030
    [31] ROHIL M K, MATHUR S. CYGNSS-derived soil moisture: status, challenges and future[J]. Ecological Informatics, 2022, 69: 101621. doi: 10.1016/j.ecoinf.2022.101621
    [32] 杨文涛, 徐天河, 王娜子, 等. 星载GNSS-R土壤湿度反演中开放水域的影响[J]. 北京航空航天大学学报, 2023, 49(7): 1779-1786.

    YANG W T, XU T H, WANG N Z, et al. Influence of open water in retrieval of soil moisture by spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7): 1779-1786(in Chinese).
    [33] CHEW C, REAGER J T, SMALL E. CYGNSS data map flood inundation during the 2017 Atlantic hurricane season[J]. Scientific Reports, 2018, 8(1): 9336. doi: 10.1038/s41598-018-27673-x
    [34] MORRIS M, CHEW C, REAGER J T, et al. A novel approach to monitoring wetland dynamics using CYGNSS: everglades case study[J]. Remote Sensing of Environment, 2019, 233: 111417. doi: 10.1016/j.rse.2019.111417
  • 加载中
图(15)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  76
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 录用日期:  2024-10-26
  • 网络出版日期:  2024-10-30
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答