留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

博弈环境下的多无人机系统协同路径规划

范芮滔 刘昊 程明 马超群 刘大卫

范芮滔,刘昊,程明,等. 博弈环境下的多无人机系统协同路径规划[J]. 北京航空航天大学学报,2026,52(2):620-626 doi: 10.13700/j.bh.1001-5965.2024.0481
引用本文: 范芮滔,刘昊,程明,等. 博弈环境下的多无人机系统协同路径规划[J]. 北京航空航天大学学报,2026,52(2):620-626 doi: 10.13700/j.bh.1001-5965.2024.0481
FAN R T,LIU H,CHENG M,et al. Cooperative path planning for multiple unmanned aerial vehicles system in a game-theoretic environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):620-626 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0481
Citation: FAN R T,LIU H,CHENG M,et al. Cooperative path planning for multiple unmanned aerial vehicles system in a game-theoretic environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):620-626 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0481

博弈环境下的多无人机系统协同路径规划

doi: 10.13700/j.bh.1001-5965.2024.0481
基金项目: 

国家自然科学基金(62273015,U23B2032);北京市自然科学基金(4232045)

详细信息
    通讯作者:

    E-mail:liuhao13@buaa.edu.cn

  • 中图分类号: V249;TP183

Cooperative path planning for multiple unmanned aerial vehicles system in a game-theoretic environment

Funds: 

National Natural Science Foundation of China (62273015,U23B2032); Beijing Natural Science Foundation (4232045)

More Information
  • 摘要:

    研究了博弈环境下多无人机系统在模型动力学不确定和输入受限条件下的协同路径规划问题。在博弈环境中,我方无人机需要通过协同路径规划捕获对方无人机,并考虑避开禁区和避碰。首先,提出一种基于注意力机制的长短期记忆(LSTM)模型来预测对方无人机的轨迹,帮助我方无人机进行后续的协同路径规划。然后,通过构造性能函数,将协同路径规划问题转化为输入受限条件下的最优控制问题。提出一种基于历史数据的不依赖于模型参数的积分强化学习方法,实现了输入受限条件下的最优控制。仿真结果验证了所提方法的有效性。

     

  • 图 1  基于注意力机制的长短期记忆网络模型

    Figure 1.  Long short term memory model based on attention mechanism

    图 2  无模型积分强化学习流程

    Figure 2.  Flowchart of model-free integrated reinforcement learning

    图 3  多无人机系统的规划路径

    Figure 3.  Planned paths of multiple UAVs system

    图 4  第1组无人机规划路径

    Figure 4.  Planned paths of group 1 UAVs

    图 5  第1组无人机速度和权重更新情况

    Figure 5.  Update of velocity and weight vector for the Group 1 UAVs

    图 6  无人机到禁区球心的最短距离

    Figure 6.  The shortest distance from the UAV to the center of the restricted area

    图 7  2号无人机到对方无人机的距离

    Figure 7.  Distance from the 2nd UAV to the opposing UAV

  • [1] CAMPION M, RANGANATHAN P, FARUQUE S. Notice of removal: a review and future directions of UAV swarm communication architectures[C]//Proceedings of the 2018 IEEE International Conference on Electro/Information Technology. Piscataway: IEEE Press, 2018: 903-908.
    [2] LIU J J, WANG W P, WANG T, et al. A motif-based rescue mission planning method for UAV swarms using an improved PICEA[J]. IEEE Access, 2018, 6: 40778-40791. doi: 10.1109/ACCESS.2018.2857503
    [3] 吴傲, 杨任农, 梁晓龙, 等. 基于信息素决策的无人机集群协同搜索算法[J]. 北京航空航天大学学报, 2021, 47(4): 814-827.

    WU A, YANG R N, LIANG X L, et al. Cooperative search algorithm based on pheromone decision for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 814-827(in Chinese).
    [4] NIU X, YUAN X D, ZHOU Y W, et al. UAV track planning based on evolution algorithm in embedded system[J]. Microprocessors and Microsystems, 2020, 75: 103068. doi: 10.1016/j.micpro.2020.103068
    [5] 吴学礼, 王超, 赵俊棋, 等. 改进麻雀算法的无人机三维路径规划[J]. 科学技术与工程, 2024, 24(15): 6534-6542.

    WU X L, WANG C, ZHAO J Q, et al. Improved sparrow algorithm for UAV 3D path planning[J]. Science Technology and Engineering, 2024, 24(15): 6534-6542(in Chinese).
    [6] RAHEEM F A, IBRAHIM U I. Path planning algorithm using D* heuristic method based on PSO in dynamic environment[J]. American Scientific Research Journal for Engineering, Technology, and Sciences, 2006, 49: 257-271.
    [7] ZHANG Z, WU J, DAI J Y, et al. Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(1): 72-81. doi: 10.1177/09544100211007381
    [8] CHEN Y B, YU J Q, SU X L, et al. Path planning for multi-UAV formation[J]. Journal of Intelligent & Robotic Systems, 2015, 77(1): 229-246.
    [9] NOREEN I, KHAN A, HABIB Z. Optimal path planning using RRT* based approaches: a survey and future directions[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(11): 97-107.
    [10] ZHU D Q, LIU Y, SUN B. Task assignment and path planning of a multi-AUV system based on a glasius bio-inspired self-organising map algorithm[J]. The Journal of Navigation, 2018, 71(2): 482-496. doi: 10.1017/S0373463317000728
    [11] LUIS C E, SCHOELLIG A P. Trajectory generation for multiagent point-to-point transitions via distributed model predictive control[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 375-382. doi: 10.1109/LRA.2018.2890572
    [12] LUIS C E, VUKOSAVLJEV M, SCHOELLIG A P. Online trajectory generation with distributed model predictive control for multi-robot motion planning[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 604-611. doi: 10.1109/LRA.2020.2964159
    [13] LU Y, GUO Y H, ZHAO G X, et al. Distributed safe reinforcement learning for multi-robot motion planning[C]//Proceedings of the 2021 29th Mediterranean Conference on Control and Automation. Piscataway: IEEE Press, 2021: 1209-1214.
    [14] HE C Y, WAN Y, GU Y X, et al. Integral reinforcement learning-based approximate minimum time-energy path planning in an unknown environment[J]. International Journal of Robust and Nonlinear Control, 2021, 31(6): 1905-1922. doi: 10.1002/rnc.5122
    [15] HE C Y, WAN Y, GU Y X, et al. Integral reinforcement learning-based multi-robot minimum time-energy path planning subject to collision avoidance and unknown environmental disturbances[J]. IEEE Control Systems Letters, 2021, 5(3): 983-988. doi: 10.1109/LCSYS.2020.3007663
    [16] ROUSSEAS P, BECHLIOULIS C P, KYRIAKOPOULOS K J. Optimal robot motion planning in constrained workspaces using reinforcement learning[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2020: 6917-6922.
    [17] ROUSSEAS P, BECHLIOULIS C P, KYRIAKOPOULOS K J. Optimal motion planning in unknown workspaces using integral reinforcement learning[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6926-6933. doi: 10.1109/LRA.2022.3178788
    [18] LI X H, ZHAO Y, ZHANG J, et al. A hybrid PSO algorithm based flight path optimization for multiple agricultural UAVS[C]//Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence. Piscataway: IEEE Press, 2016: 691-697.
    [19] QIE H, SHI D X, SHEN T L, et al. Joint optimization of multi-UAV target assignment and path planning based on multi-agent reinforcement learning[J]. IEEE Access, 2019, 7: 146264-146272. doi: 10.1109/ACCESS.2019.2943253
    [20] GUO Y H, CHEN G. Robust near-optimal coordination in uncertain multiagent networks with motion constraints[J]. IEEE Transactions on Cybernetics, 2023, 53(5): 2841-2851. doi: 10.1109/TCYB.2021.3125318
    [21] JENSEN-NAU K R, HERMANS T, LEANG K K. Near-optimal area-coverage path planning of energy-constrained aerial robots with application in autonomous environmental monitoring[J]. IEEE Transactions on Automation Science and Engineering, 2020, 18(3): 1453-1468.
    [22] DUAN H B, YUAN Y, ZENG Z G. Distributed cooperative control of multiple UAVs in the presence of actuator faults and input constraints[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(11): 4463-4467.
    [23] SHI Z Y, XU M, PAN Q. 4-D flight trajectory prediction with constrained LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11): 7242-7255.
    [24] KANT R, SAINI P, KUMARI J. Long short-term memory auto-encoder-based position prediction model for fixed-wing UAV during communication failure[J]. IEEE Transactions on Artificial Intelligence, 2022, 4(1): 173-181.
    [25] LIU H, MA T, LEWIS F L, et al. Robust formation control for multiple quadrotors with nonlinearities and disturbances[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1362-1371. doi: 10.1109/TCYB.2018.2875559
    [26] LIU H, TIAN Y, LEWIS F L, et al. Robust formation tracking control for multiple quadrotors under aggressive maneuvers[J]. Automatica, 2019, 105: 179-185. doi: 10.1016/j.automatica.2019.03.024
    [27] BHASIN S, KAMALAPURKAR R, JOHNSON M, et al. A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems[J]. Automatica, 2013, 49(1): 82-92. doi: 10.1016/j.automatica.2012.09.019
    [28] DEPTULA P, BELL Z I, DOUCETTE E A, et al. Data-based reinforcement learning approximate optimal control for an uncertain nonlinear system with control effectiveness faults[J]. Automatica, 2020, 116: 108922. doi: 10.1016/j.automatica.2020.108922
  • 加载中
图(7)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  105
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-09-23
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答