留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型旋翼倾转过渡状态多维气动特征试验研究

刘聪 李百庆 魏志强 王宇

刘聪,李百庆,魏志强,等. 小型旋翼倾转过渡状态多维气动特征试验研究[J]. 北京航空航天大学学报,2025,51(11):3799-3807 doi: 10.13700/j.bh.1001-5965.2024.0863
引用本文: 刘聪,李百庆,魏志强,等. 小型旋翼倾转过渡状态多维气动特征试验研究[J]. 北京航空航天大学学报,2025,51(11):3799-3807 doi: 10.13700/j.bh.1001-5965.2024.0863
LIU C,LI B Q,WEI Z Q,et al. Experimental study on multidimensional aerodynamic characteristics of small rotor in tilt transition[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3799-3807 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0863
Citation: LIU C,LI B Q,WEI Z Q,et al. Experimental study on multidimensional aerodynamic characteristics of small rotor in tilt transition[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3799-3807 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0863

小型旋翼倾转过渡状态多维气动特征试验研究

doi: 10.13700/j.bh.1001-5965.2024.0863
基金项目: 

中央高校基本科研业务费项目中国民航大学专项(KJZ53420230006);天津市自然科学基金多元投入青年项目(23JCQNJC00170)

详细信息
    通讯作者:

    E-mail:liucongcauc@163.com

  • 中图分类号: V211.44

Experimental study on multidimensional aerodynamic characteristics of small rotor in tilt transition

Funds: 

Fundamental Research Funding Project for Central Universities of Civil Aviation University of China (KJZ53420230006); Multi-input youth project of the Tianjin Natural Science Foundation (23JCQNJC00170)

More Information
  • 摘要:

    倾转过渡状态是小型倾转旋翼飞行器飞行模式转换的关键飞行阶段,为获取旋翼在倾转过渡时不同倾转姿态下的气动特征,以小型定距旋翼为研究对象,进行了0°~90°范围内各倾转角状态的定常气动试验研究。首先搭建了风扇阵列开口风墙系统,通过五孔探针和热线测量了出口气流品质,并验证了试验方法的可行性。通过高分辨率六分量力/力矩传感器测量旋翼多维气动数据,获取了旋翼在不同来流速度、转速和倾转角组合状态下的气动特征。结果表明:在0°~90°倾转角范围内,倾转角对轴向气动特征的影响与来流速度相关,当来流速度大于5 m/s时,同转速的旋翼轴向拉力随倾转角的增大而降低,轴向扭矩受来流速度的影响,低于轴向拉力。当来流速度高于7 m/s且转速低于2500 r/min时,易出现局部负拉力现象。旋转平面内水平侧向力与俯仰力矩均随倾转角增大而降低,且倾转前段0°~45°倾转角内两者数值显著高于后半段。地面坐标系下,旋翼垂直升力系数在15°倾转角后均迅速降低,以5000 r/min转速倾转时水平速度对垂直升力系数的影响小于20%;旋翼水平拉力系数在0°~30°倾转区间差别较小,60°后水平拉力增长趋于平缓,其值受转速和来流速度影响较大。

     

  • 图 1  风墙示意图

    Figure 1.  Schematic diagram of the wind wall

    图 2  来流速度和湍流度测量系统

    Figure 2.  Measurement system of flow velocity and turbulence

    图 3  截面速度分布

    Figure 3.  Velocity distribution of cross-section

    图 4  旋翼气动测试台

    Figure 4.  Rotor aerodynamic test rig

    图 5  力/力矩传感器及旋翼

    Figure 5.  Force/moment sensor and rotor

    图 6  旋翼弦长和扭转角分布

    Figure 6.  Rotor chord length and twist angle distribution

    图 7  旋翼力、扭矩方向示意图

    Figure 7.  Schematic diagram of rotor forces and moment directions

    图 8  倾转状态下轴向拉力Fz分布

    Figure 8.  The distribution of axial thrust Fz under tilt condition

    图 9  倾转状态下轴向扭矩Mz分布

    Figure 9.  The distribution of axial torque Mz under tilt condition

    图 10  倾转状态下旋翼轴向拉力系数比变化

    Figure 10.  The variation of rotor axial thrust coefficient ratio under tilt condition

    图 11  倾转状态下旋翼轴向扭矩系数比变化

    Figure 11.  The variation of rotor axial torque coefficient ratio under tilt condition

    图 12  倾转状态下水平侧向力Fx分布

    Figure 12.  The distribution of horizontal lateral force Fx under tilt condition

    图 13  倾转状态下旋翼俯仰力矩My分布

    Figure 13.  The distribution of pitching moment My under tilt condition

    图 14  倾转状态下旋翼水平侧向力系数变化

    Figure 14.  The variation of rotor horizontal lateral force coefficient under tilt condition

    图 15  倾转状态下旋翼俯仰力矩系数变化

    Figure 15.  The variation of rotor pitching moment coefficient under tilt condition

    图 16  倾转状态下旋翼垂直拉力系数变化

    Figure 16.  The variation of rotor vertical thrust coefficient under tilt condition

    图 17  倾转状态下旋翼水平拉力系数变化

    Figure 17.  The variation of rotor horizontal thrust coefficient under tilt condition

    表  1  截面核心区速度偏差与湍流度统计

    Table  1.   Velocity and turbulence statistics of core region in cross-section

    名义速度/
    (m·s−1)
    平均速度/
    (m·s−1)
    最大速度/
    (m·s−1)
    最小速度/
    (m·s−1)
    平均偏差
    RMSE/%
    湍流度/%
    3 3.11 3.32 2.93 5.81 2.51
    5 5.01 5.34 4.82 4.63 1.62
    7 7.05 7.31 6.81 1.32 1.14
    9 9.19 9.60 9.03 1.53 0.85
    下载: 导出CSV

    表  2  低速风洞与风墙的气动拉力试验结果对比

    Table  2.   Comparison of aerodynamic thrust test results between low-speed wind tunnel and wind wall

    来流速度/
    (m·s−1)
    Ω/
    (r·min−1)
    风洞拉力/
    N
    风墙拉力/
    N
    相对误差/%
    3 2500 10.248 9.861 3.78
    3 5000 56.432 55.179 2.22
    5 2500 6.641 6.407 3.53
    5 5000 50.581 49.645 1.85
    9 2500 1.782 1.727 3.09
    9 5000 35.564 35.205 1.90
    下载: 导出CSV

    表  3  试验工况表

    Table  3.   Experimental conditions table

    工况 旋翼转角ϕ/(°) 来流速度/(m·s−1) 旋翼转速Ω/(r·min−1)
    范围 0~90 3~9 10005000
    间隔 7.5 2 500
    下载: 导出CSV
  • [1] 程宇轩, 周洲, 王科雷. 分布式推进垂直起降固定翼的过渡走廊边界研究[J]. 西北工业大学学报, 2022, 40(6): 1195-1203. doi: 10.1051/jnwpu/20224061195

    CHENG Y X, ZHOU Z, WANG K L. Research on transition corridor boundary of distributed propulsion VTOL fixed wing[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1195-1203(in Chinese). doi: 10.1051/jnwpu/20224061195
    [2] 夏济宇, 周洲, 王正平, 等. 倾转动力无人机三维过渡走廊[J]. 北京航空航天大学学报, 2024, 50(3): 886-895.

    XIA J Y, ZHOU Z, WANG Z P, et al. Three-dimensional transition corridor of tilt-propulsion UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 886-895(in Chinese).
    [3] 苏子康, 陈嘉, 李雪兵, 等. 四倾转旋翼无人机过渡飞行位姿协调控制[J/OL]. 北京航空航天大学学报, 2024: 1-20. (2024-01-18). https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2023.0622.

    SU Z K, CHEN J, LI X B, et al. Coordinated control of transition flight position and attitude for quad tilt-rotor UAV[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2024: 1-20. (2024-01-18). https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2023.0622(in Chinese).
    [4] SEDDON J, NEWMAN S. Basic helicopter aerodynamics[M]. 3rd ed. New York: John Wiley&Sons, Ltd, 2011.
    [5] ACREE C W. Vertical climb testing of a full-scale proprotor on the tiltrotor test rig[C]//vFS Aeromechanics for Advanced Vertical Flight Technical Meeting. San Jose: CA, 2020.
    [6] BETZINA M D. Rotor performance of an isolated full-Scale XV-15 tiltrotor in helicopter mode[C]//American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialists Meeting. San Francisco: [s.n.], 2002.
    [7] KITAPLIOGLU C, BETZINA M, JOHNSON W. Blade-vortex interaction noise of an isolated full-scale XV-15 tilt-rotor[C]//American Helicopter Society 56th Annual Forum Proceedings. Virginia Beach: American Helicopter Society, 1996.
    [8] YAMAUCHI G K, BURLEY C L, MERCKER E, et al. Flow measurements of an isolated model tilt rotor[C]//Annual Forum Proceedings-American Helicopter Society. Montreal: American Helicopter Society, 1999, 55(1): 891-909.
    [9] YAMAUCHI G K, JOHNSON W, WADCOCK A J. Vortex wake geometry of a model tilt rotor in forward flight[C]//AHS International Meeting on Advanced Rotorcraft Technology and Life Saving Activities. Tochigi: American Helicopter Society International, 2002.
    [10] HARRIS F D. Hover performance of isolated proprotors and propellers- Experimental data: NASA/CR-2017-219486[R]. Moffett Field: NASA Ames Research Center, 2017.
    [11] ACREE C W. Calculation of JVX proprotor performance and comparisons with hover and high-speed test data[C]//AHS Specialist's Conference on Aeromechanics. San Francisco: [s.n.], 2008.
    [12] CHOI S W, KIM J M. Investigation into the aerodynamic performance of the tiltrotor unmanned aerial vehicle proprotor[J]. Journal of Aircraft, 2010, 47(3): 1083-1086. doi: 10.2514/1.47533
    [13] BEAUMIER P, DECOURS J, LEFEBVRE T. Aerodynamic and aero-acoustic design of modern tilt-rotors: the onera experience[C]//26th ICAS Congress. Anchorage: [s.n.], 2008.
    [14] NARRAMORE J. Advanced technology airfoil development for the XV-15 tilt-rotor vehicle[C]//AIAA and NASA Ames VSTOL Conference. Reston: AIAA, 1981.
    [15] 张卫国, 唐敏, 武杰, 等. 倾转旋翼机风洞试验综述[J]. 航空学报, 2024, 45(9): 530114.

    ZHANG W G, TANG M, WU J, et al. Overview of wind tunnel test research on tiltrotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530114(in Chinese).
    [16] 李尚斌, 江露生, 林永峰. 倾转旋翼机悬停状态气动干扰分析[J]. 工程力学, 2024, 41(3): 232-240.

    LI S B, JIANG L S, LIN Y F. The analysis of aerodynamic interference of tilt rotor aircraft in hover[J]. Engineering Mechanics, 2024, 41(3): 232-240(in Chinese).
    [17] 陈平剑, 林永峰, 黄水林. 倾转旋翼机旋翼/机翼气动干扰的试验研究[J]. 直升机技术, 2008(3): 107-115.

    CHEN P J, LIN Y F, HUANG S L. Experimental study on rotor/wing aerodynamic interaction for tilt-rotor aircraft[J]. Helicopter Technique, 2008(3): 107-115(in Chinese).
    [18] 招启军, 倪同兵, 李鹏, 等. 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报, 2018, 33(12): 2900-2912.

    ZHAO Q J, NI T B, LI P, et al. Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power, 2018, 33(12): 2900-2912(in Chinese).
    [19] 李春华. 时间准确自由尾迹方法建模及倾转旋翼气动特性分析[D]. 南京: 南京航空航天大学, 2007.

    LI C H. Modeling on time-accurate free wake method and investigation on aerodynamic characteristics of rotor and tiltrotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
    [20] MOORE Z T, SILWAL L, VIJAYARAJ A, et al. Reynolds number effects on the interference factors for a counter-rotating coaxial rotor[C]//AIAA SCITECH 2024 Forum. Reston: AIAA, 2024.
    [21] WANG K L, ZHOU Z, ZHU X P, et al. Aerodynamic design of multi-propeller/wing integration at low Reynolds numbers[J]. Aerospace Science and Technology, 2019, 84: 1-17. doi: 10.1016/j.ast.2018.07.023
    [22] 刘双喜, 林泽淮, 刘伟, 等. 基于INDI的倾转旋翼无人机过渡模式控制方案[J]. 航空学报, 2024, 45(17): 529685.

    LIU S X, LIN Z H, LIU W, et al. Transition mode control scheme of tilt rotor UAV based on INDI[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529685(in Chinese).
    [23] LIU C, LI B Q, WEI Z Q, et al. Effects of wake separation on aerodynamic interference between rotors in urban low-altitude UAV formation flight[J]. Aerospace, 2024, 11(11): 865. doi: 10.3390/aerospace11110865
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  31
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-04
  • 录用日期:  2025-03-28
  • 网络出版日期:  2025-04-18
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答