Orthogonal direction algorithm for global function optimization
-
摘要: 提出了一种求解函数全局优化问题的正交方向法.该方法通过前三轮大范围的正交设计寻找全局最优解的大体位置,然后通过若干轮小范围的正交设计进行最优解的精确逼近.每一轮正交设计中,探索设计空间的试验点依据正交表围绕一个中心点产生,设计变量的取值范围逐渐减小.而在每一轮正交设计后,采用一维搜索提高搜索精度.一维搜索的方向由每轮正交设计的中心点和最好(或最坏)点决定. 该算法计算量较小且易于编程.采用两个数学优化问题和一个火箭动力、水平发射的单级入轨飞行器的弹道优化问题对算法进行了测试.这些算例表明,当目标函数的极值数少于正交表提供的试验方案数时,正交方向法常常能以较小的计算量获得全局最优解.Abstract: A global optimization algorithm for function optimization named "orthogonal direction algorithm" was raised . This algorithm uses 3 times of large ranged orthogonal design to find the approximate location of the global optimization solution and then uses several times of small ranged orthogonal design to make precise approach. In each times of orthogonal design, the experimental points which detect the design space are generated according to the orthogonal table around a central point and the range of the design variables decrease gradually. After each times of orthogonal design, one-dimension search is also employed to improve search precision, the search direction is determined by the central point and the best(or worst) design points. This algorithm need less times of objective function calculation and is easy to make program. Two numerical optimization problem and a trajectory optimization problem of a rocket-powered horizontal-launched single-stage-to-orbit vehicle were solved to test this algorithm. These examples show when the peak of the objection function is less than the number of experimental points provided by the orthogonal table, "orthogonal direction algorithm" can often find the global optimization solution with small calculation.
-
Key words:
- orthogonal table /
- orthogonal design /
- global optimization
-
[1] 志宏,施 工,胡永明.一种新的函数全局优化算法——统计归纳算法[J].清华大学学报(自然科学版),2002,42(5):580~583 Liu Zhihong, Shi Gong, Hu Yongming. A new global optimization algorithm statistic inductive algorithm[J]. Journal of Tsinghua University, 2002,42(5):580~583(in Chinese) [2] 凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.1~16 Wang Ling.Intelligent optimization algorithm and its application[M].Beijing:Tsinghua University Press,2001.1~16(in Chinese) [3] 伟,卢锡城.一种函数优化问题的混合遗传算法[J].软件学报,1999,10(8):719~823 Peng Wei, Lu Xicheng. A hybrid algorithm for function optimization[J]. Journal of Software, 1999,10(8):719~823(in Chinese) [4] 麟书,王宏起.支持并行工程的方案设计研究[J].北京航空航天大学学报,1999,25(6):643~646 He Linshu, Wang Hongqi. Research on conceptual design supporting concurrent engineering[J]. Journal of Beijing University of Aeronautic and Astronautics,1999,25(6):643~646(in Chinese) [5] 国现场统计研究会.正交法和三次设计[M].北京:科学出版社,1987.1~30 Spot Statistic Research Association of China. Orthogonal algorithm and tri-design[M]. Beijing:Science Press, 1987.1~30(in Chinese) [6] 森元.单级入轨运输器的发射技术研究[J].导弹与航天运载技术,2001,5:1~5 Zhu Senyuan. The study about the launching technology of the single stage to orbit vehicle[J]. Missiles and Space Vehicles, 2001,5:1~5(in Chinese) [7] 森元. 论单级入轨火箭运载器的发展途径[J].导弹与航天运载技术,2002(5):11~14 Zhu Senyuan. Review of the development way for rocket vehicle of single stage to obit[J]. Missiles and Space Vehicles, 2002(5):11~14(in Chinese) [8] 业伦.航天器飞行动力学原理[M].北京:宇航出版社,1995.177~178 Xiao Yelun. Flight dynamics of space vehicles[M]. Beijing:Astronautic Press, 1995.177~178(in Chinese)
点击查看大图
计量
- 文章访问数: 2536
- HTML全文浏览量: 174
- PDF下载量: 722
- 被引次数: 0