Application of the hybrid BP/GA algorithm in simple integrated navigation system
-
摘要: Kalman滤波器是组合导航中最常用的最优滤波工具,但是在组合导航系统中有一些应用的局限性,尤其在低成本的GPS(Global Positioning System)/DRS(Dead Reckoning System)组合导航系统中,存在着使用的GPS接收机和惯导测量元件的精度不够高的问题,要提高系统的测量精度,只能提高算法软件的先进性.为补偿卡尔曼滤波发散的缺陷,将神经网络和遗传算法组成的混合算法与卡尔曼滤波相结合,应用到GPS/DRS组合导航系统中,该算法不仅具有普通神经网络的自主学习能力、好的实时性,还克服了传统算法收敛速度慢、对学习参数敏感、局部有极小点等缺点,同时兼具卡尔曼滤波的最优估计性能.仿真结果验证了这种算法和常规卡尔曼滤波算法相比较具有更高的精度和稳定性,经过对仿真数据进行统计分析,纬度误差的最大值降低了一个数量级.Abstract: Kalman filter is the most usual optimization filter with some limitation when applied in the integrated navigation system. Especially in simple global positioning system/ dead reckoning system (GPS/DRS ),the receiver and the inertial navigation units are low-cost and low-accuracy. To improve accuracy of the system, it must be focused on the advanced algorithm. To compensate the divergence of Kalman filter, a hybrid algorithm composed of back propagation (BP) neural net and genetic algorithm (GA) together with Kalman filter was applied in low-cost GPS/DRS integrated navigation system. This algorithm owns not only self-study ability and good real-time performance of neural net but also optimization assessment ability of Kalman filter, and even overcomes many flaws of neural net,such as slow convergence ,sensitivity about the study parameters and local extremums. The simulation result also proves that this algorithm is prior in precise and stability compared to usual Kalman filter, for example, the statistic analysis shows that the maximal error of latitude is reduced to a lower magnitude.
-
[1] 韩明华,袁乃昌.多层神经网络在跟踪式Kalman滤波器中的应用[J].国防科技大学学报,1997,19 (5):18~24 Han Minghua,Yuan Naichang.A improved tracking Kalman filter using a multilayed neural network[J].Journal of National University of Defense Technology,1997,19 (5):18~24(in Chinese) [2] 庄朝文.车载GPS/DRS/MM组合导航系统应用研究 .北京:北京航空航天大学自动化科学与电气工程学院,2003 Zhuang Chaowen,Application study on vehicle GPS/DRS/MM integrated navigation system .Beijing:School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,2003(in Chinese) [3] 杨朋林,贺 新.人工神经网络与遗传算法结合的研究[J].现代电子技术,2002,143(12):105~107 Yang Penglin,He Xin.Research on the combination of artificial neural net and genetic algorithm[J].Modern Electronic Technology,2002,143(12):105~107(in Chinese) [4] 王小平,曹立明.遗传算法——理论、应用于软件实现[M].西安:西安交通大学出版社,2002.1~4,10~16 Wang Xiaoping, Cao Liming.Genetic agorithm——theory, application and software realization[M].Xi’an:Xi’an Jiaotong University Press,2002.1~4,10~16(in Chinese) [5] Wu Guangning, Jiang Xiongwei, Xie Hengkun. A neural network used for PD pattern recognition with genetic algorithm .Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials . Xi'an:IEEE Inc, 2000.451~454 [6] 王宏伦,吕庆风.模糊逻辑系统GA+BP混合学习算法[J].控制理论与应用,2001,18(1):18~20 Wang Honglun,Lü Qingfeng.A hybrid GA-BP self-learning algorithm for fuzzy logic system[J].Control Theory and Application,2001,18(1):18~20(in Chinese)
点击查看大图
计量
- 文章访问数: 2603
- HTML全文浏览量: 49
- PDF下载量: 193
- 被引次数: 0