Steering law design for SGCMGs taking gimbal servo characteristics into account
-
摘要: 在单框架控制力矩陀螺(SGCMG)系统操纵律的设计中,通常假定框架伺服系统具有理想的伺服跟踪性能.然而,框架伺服系统有限的带宽和实际存在的各种扰动力矩都会使其跟踪性能下降.为抑制SGCMG框架伺服特性对操纵性能的影响,设计了一种新型操纵律.该操纵律综合考虑了SGCMG系统运动学和动力学特性,可以根据航天器姿态控制给出的角动量(或力矩)指令,直接计算出每个SGCMG框架驱动系统所需的控制力矩.由于操纵律没有算法奇异,在SGCMG系统不出现运动奇异的情况下,可使操纵误差指数收敛至零.同时,操纵律形式简单,易于实现.应用在航天器上的某4-SGCMG系统的仿真结果表明,上述操纵律是可行的.Abstract: Gimbal servo systems of single gimbal control moment gyroscopes (SGCMGs) are often assumed to have ideal tracking performance during the steering law design. The tracking performance can be decreased due to the finite bandwidth and various disturbances of gimbal servo systems. In order to attenuate the effect of gimbal servo systems on steering performance, a new steering law was presented. This steering law was designed not only based on kinematics, but also dynamics of SGCMGs, and could calculate the control torque for each SGCMG gimbal directly according to the momentum (or torque) command. Since it has no arithmetic singularity, steering error can be made converge to zero exponentially when system singularities do not appear. Comparatively, it has a simple form and is easy to be realized. Simulation results of a certain 4-SGCMG system indicate that the algorithm stated above is feasible.
-
Key words:
- spacecraft /
- control moment gyroscopes /
- attitude control /
- steering law
-
[1] Niemeyer G, Slotine J-J E. Performance in adaptive manipulator control . The International Journal of Robotics Research, 1991, 10(2):149~161 [2]Slotine J-J E, Li W P. On the adaptive control of robot manipulators . The International Journal of Robotics Research, 1987, 6(3):49~59 [3]Gupta S, Luh J Y S. Closed-loop control of manipulators with redundant joints using the Hamilton-Jacobi-Bellman equations . In:Proceedings of the 1991 IEEE International Conference on Robotics and Automation . Washington:IEEE Computer Society Press, 1991. 472~477 [4]Dawson D M, Lewis F L, Dorsey J F. Robust force control of a robot manipulator[J]. The International Journal of Robotics Research, 1992, 11(4):312~319 [5]Guglielmo K, Sadegh N. Theory and implementation of a repetitive robot controller with Cartesian trajectory description[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1996, 118(2):15~21 [6]Seraji H. Configuration control of redundant manipulators:theory and implementation[J]. IEEE Transactions on Robotics and Automation, 1989, 5(4):472~490 [7]Novakovic Z R, Zlajpah L. Robust tracking control for robots using the sliding mode:a task-space approach . In:Rembold U, ed. Proceedings of IFAC Symposium on Robot Control'1988 . Oxford:Pergamon, 1988. 201~206 [8] Novakovic Z R.Lyapunov-like methodology for robot tracking control synthesis[J].International Journal of Control,1990,51(3):567~583 [9] 吴 忠, 吴宏鑫. SGCMG系统非奇异路径规划[J]. 控制理论与应用,1999, 16(1):21~26 Wu Zhong, Wu Hongxin. Nonsingular path planning in single gimbal control moment gyroscope systems[J]. Control Theory and Applications, 1999, 16(1):21~26(in Chinese) [10] 吴 忠, 吴宏鑫, 李 勇. SGCMG系统框架角轨迹跟踪自适应补偿控制 . 控制理论与应用,2001, 18(2):210~216 Wu Zhong, Wu Hongxin, Li Yong. Adaptive compensation control of trajectory tracking in gimbal angle space for single gimbal control moment gyroscope systems . Control Theory and Applications, 2001, 18(2):210~216(in Chinese)
点击查看大图
计量
- 文章访问数: 2980
- HTML全文浏览量: 228
- PDF下载量: 9
- 被引次数: 0