Failure process of thermal barrier coatings under thermal and mechanical loading
-
摘要: 针对热障涂层服役环境中热物理化学环境与机械载荷耦合作用的特点,采用交流阻抗谱法与声发射法对热障涂层在恒定外载荷(高温蠕变)以及交变载荷(高温低周疲劳)作用下的失效过程进行了考察分析,研究发现,交流阻抗谱中低频段阻抗值的变化可以有效地反映热障涂层热氧化层内横向裂纹的萌生及扩展;有无外机械载荷作用下热障涂层的热循环失效的模式截然不同,在高温蠕变条件下,热障涂层的裂纹并不产生在热氧化层内,而是产生在热氧化层与柱状晶之间的等轴晶区;而在高温低周疲劳条件下裂纹是在粘结层与高温合金基体的扩散层处.Abstract: High temperature behaviors of thermal barrier coatings prepared by electron beam physical vapor deposition were investigated under mechanical loading. The change in microstructure and the formation of microcrack were studied by means of impedance spectroscopy (IS) and acoustic emission (AE) methods. The impedance value is very sensitive to the microcrack in the thermally grown oxidation (TGO) layer in the low frequency range. The formation and the propagation of the microcracks can be monitored by comparing the change of impedance value combining with acoustic emission. It has been found that the failure mode was quite different for TBC samples tested with or without mechanical loading. When TBCs were tested during high temperature creep, the microcracks formed in the equiaxial crystalline area between TGO layer and columnar structure of YSZ top coat, instead of in TGO layer during thermal cyclic testing without mechanical loading. However, cracks initialized in the diffusion layer between substrate and bond coat when TBCs were tested with low cycle fatigue at high temperature.
-
Key words:
- thermal barrier coats /
- failure analysis /
- service environment /
- impedance /
- acoustic emission
-
[1] Wu Bochen, Chang E, Chang Shifeng, et al. Degradation mechanisms of ZrO2-8wt.% Y2O3/Ni-22Cr-10Al-1Y thermal barrier coatings[J].Journal of American Ceramic Society, 1989,72 (2):212~218 [2]Taylor R, Brandon J R,Morrell P. Microstructure, composition and property relationships of plasma sprayed thermal barrier coatings [J]. Surface and Coating Technology, 1992,50:141~149 [3]Xu H B, Gong S K, Deng L. Preparation of thermal barrier coatings for gas turbine blades by EB-PVD [J]. Thin Solid Films, 1998, 334:98~102 [4]Hoag K L, A perspective on low heat rejection diesel engine development . In:Fairbanks J W. Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop . Washiton D C, 1987.9~15 [5]Kvernes I, Lugscheider E. Thick thermal barrier coatings for diesel engines [J]. Surface Engineering, 1995,11(4):296~300 [6]Movchan B A, Malashenko I S. Two-and three-layer coatings produced by deposition in vacuum for gas turbine blade protection[J]. Surface and Coating Technology, 1994, 67:55~63 [7]Schulz U, Fritstcher K. Thermal cyclic behavior of microstructurally modified EB-PVD thermal barrier coatings[J]. Materials Science Forum, 1997, 251~254:957~964 [8]Guo H B, Xu H B, Gong S K. A study on gradient thermal barrier coatings by EB-PVD in a cyclic high temperature hot corrosion environment [J]. Jaurnal Materials Science, 2002, 37:5333~5337 [9]Guo H B, Gong S K, Xu H B. Evaluation of hot-fatigue behaviors of EB-PVD gradient thermal barrier coatings [J]. Materials Science and Engineering A, 2002, 325:261~269 [10] Guo H B, Xu H B, Bi X F, et al. Preparation of Al2O3-YSZ composite coating by EB-PVD[J]. Materials Science and Engineering A, 2002, 325:389~393 [11]Guo H B, Gong S K, Xu H B. Oxidation and hot corrosion of gradient thermal barrier coatings prepared by EB-PVD[J]. Journal Materials Science and Technology, 2002, 18:27~30 [12]Bi X F, Xu H B, Gong S K. Investigation of failure mechanism of thermal barrier coatings prepared by EB-PVD[J]. Surface and Coating Technology, 2000,130:122~127 [13]Rabier A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings [J]. Acta Materialia, 2000, 48:3963~3976 [14]Ruud James A, Bartz A, Borom Marcus P, et al. Strength degradation and failure mechanisms of electron-beam physical-vapor-deposited thermal barrier coatings [J]. Journal of American Ceramic Society, 2001, 84:1545~1552 [15]Ali M S, Song S, Xiao P. Evaluation of degradation of thermal barrier coatings using impedance spectroscopy [J]. Journal of European Ceramic Society,2002,(22):101~107 [16]Wang X, Mei J, Xiao P. Non-destructive evaluation of thermal barrier coatings using impedance spectroscopy[J]. Journal of European Ceramic Society, 2001,(21):855~859 期刊类型引用(16)
1. 张琴,蔡慧茹,兰明东,浦克,胡雄. 基于改进麻雀优化PID的波浪补偿控制方法. 工程科学与技术. 2024(01): 22-34 . 百度学术
2. 王彦快,米根锁,孔得盛,杨建刚,张玉. 基于MDS和改进SSA-SVM的高速铁路道岔故障诊断方法研究. 铁道学报. 2024(01): 81-90 . 百度学术
3. 夏煌智,陈丽敏,毛雪迪. 融入动态学习与高斯变异的自适应秃鹰搜索算法. 计算机与现代化. 2024(01): 117-126 . 百度学术
4. 杜云,周志奇,贾科进,丁力,卢孟杨林. 混合多项自适应权重的混沌麻雀搜索算法. 计算机工程与应用. 2024(07): 70-83 . 百度学术
5. 张迎春,姜岚,唐波,陈曦,胡辉. 基于改进麻雀搜索算法的变电构架优化方法. 振动与冲击. 2024(07): 94-101 . 百度学术
6. 游志平,马宏,梁群,王冠华. 基于IDBO-KELM的汽车零部件激光熔覆几何形貌预测建模方法研究. 应用激光. 2024(03): 51-62 . 百度学术
7. 马夏敏,张雷克,刘小莲,田雨,王雪妮,邓显羽. 基于麻雀搜索算法的梯级泵站优化调度. 水力发电学报. 2024(05): 43-53 . 百度学术
8. 王攀,胡业林. 基于改进麻雀算法的配电网故障定位. 哈尔滨商业大学学报(自然科学版). 2024(03): 307-314 . 百度学术
9. 王晨,周雪松,马幼捷,赵明,王鸿斌,赵家欣. 基于混合策略麻雀搜索算法优化的DC-DC变换器自抗扰稳压策略. 国外电子测量技术. 2024(07): 46-56 . 百度学术
10. 李嘉轩,于惠钧,马凡烁,刘紫英. 基于LF-ATSO算法在光伏系统MPPT中的研究. 现代电子技术. 2024(21): 149-155 . 百度学术
11. 李易达,王雨欣,李晨曦,赵冀,马恢,张漫,李寒. 融合改进头脑风暴与Powell算法的马铃薯多模态图像配准. 农业工程学报. 2024(19): 146-158 . 百度学术
12. 王基臣,许亮,张紫叶. 改进DBO优化CRJ网络的PEMFC剩余使用寿命预测. 电源技术. 2024(11): 2295-2303 . 百度学术
13. 李东升,朱奎,郭艳军,张树健,高明星,韩旭航. 组合神经网络的城市用水量预测模型研究与应用. 中国水利水电科学研究院学报(中英文). 2024(06): 579-589 . 百度学术
14. 苏莹莹,王升旭,白智超. 基于ISSA的多渠道易腐品供应链网络规划. 运筹与管理. 2024(11): 111-117 . 百度学术
15. 李涵,李文敬. 混合策略改进的金枪鱼群优化算法. 广西科学. 2023(01): 208-218 . 百度学术
16. 李泽政,刘卫星,李飞,李一帆,杨爱民. 基于数据增强的烧结矿转鼓强度预测研究. 烧结球团. 2023(06): 62-68 . 百度学术
其他类型引用(47)
-

计量
- 文章访问数: 3704
- HTML全文浏览量: 200
- PDF下载量: 14
- 被引次数: 63