Unsteady lift mechanisms and energetic in flying insects
-
摘要: 昆虫的飞行机理可能为微型飞行器所借鉴,因而近来人们对其十分关注.在过去10年中,该领域的工作有了较大的进展.回顾了这10年中该领域的研究工作:首先,简述昆虫翅的拍动运动;其次,探讨拍动翅的非定常高升力机制;然后,讨论昆虫悬停和前飞时的能耗问题;最后,介绍最近关于具有两对翅膀的昆虫——蜻蜓飞行的研究结果.Abstract: Recently, the interest has been developed in small autonomous flying vehicles. There already exist such autonomous MAVs(micro\|air vehicles) in nature: the insects. In the design of small flying machines, it is very helpful to understand first how these small animals fly. The achievements of the last ten years in the field of insect flight aerodynamics are reviewed. First, the kinematics of the flapping motion of insects is summarized. Next, issues related to the unsteady lift mechanisms of flapping wings of the fruit fly and similar insects are presented. Then the power requirements of hovering and forward flight are discussed. Finally, recent works on the insects that have two pairs of wings are discussed.
-
Key words:
- insect /
- flies /
- bees /
- moths /
- dragonflies /
- non-steady flow /
- flapping wing /
- power requirement /
- micro-air vehicles(MAVs)
-
[1] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production [J]. J Exp Biol, 1973, 59:169~230 [2] Ellington C P. The aerodynamics of hovering insect flight. II. Morphological parameters [J]. Phil Trans R Soc Lond B, 1984, 305:17~40 [3] Ellington C P. Aerodynamics of hovering insect flight. III. Kinematics. Phil Trans R Soc Lond B, 1984, 305:41~78 [4] Vogel S. Flight in drosophila. III. Aerodynamic characteristics of fly wings and wing models [J]. J Exp Biol, 1967, 44:431~443 [5] Wakeling J M, Ellington C P. Dragonfly flight I. Gliding flight and steady-state aerodynamic forces [J]. J Exp Biol, 1997, 200:543~556 [6] Ellington C P. The aerodynamics of hovering insect flight. Ⅵ. Lift and power requirements [J]. Phil Trans R Soc Lond B, 1984, 305:145~181 [7] Vogel S. Flight in drosophila. I. Flight performance of tethered flies. J Exp Biol, 1966, 44:567~578 [8] David C T. The relationship between body angle and flight speed in free-flying drosophila [J]. Physical Ent, 1978, 3:191~195 [9] Zanker J M. The wing beat of drosophila melanogaster. I. Kinematics [J]. Phil Trans R Soc Lond B, 1990, 327:1~18. [10] Dickinson M H, Lehman F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight [J]. Science, 1999, 284:1954~1960. [11] Dudley R, Ellington C P. Mechanics of forward flight in bumblebees. I. Kinematics and morphology [J]. J Exp Biol, 1990, 148:19~52. [12] Willmott A P, Ellington C P. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight [J]. J Exp Biol, 1997, 200:2705~2722. [13] Usherwood J R, Ellington C P. The aerodynamics of revolving wings. I. Model hawkmoth wings [J]. J Exp Biol, 2002, 205:1547~1564. [14] Usherwood J R, Ellington C P. The aerodynamics of revolving wings. II. Propeller force coefficients from mayfly to quail [J]. J Exp Biol, 2002, 205:1565~1576. [15] Ennos A R. The kinematics and aerodynamics of the free flight of diptera [J]. J of Exp Biol, 1989, 142:49~85. [16] Lighthill M J. On the Weis-Fogh mechanism of lift generation [J]. J Fluid Mech, 1973, 60:1~17. [17] Maxworthy T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part Ⅰ. Dynamics of the fling [J]. J Fluid Mech, 1979, 93:47~63. [18] Dickinson M H, Gotz K G. Unsteady aerodynamic performance of model wings at low Reynolds numbers [J]. J Exp Biol, 1993, 174:45~64. [19] Ellington C P, van den Berg C, Willmott A P, Thomas A L R. Leading edge vortices in insect flight [J]. Nature, 1996, 384:626~630. [20] Van den Birg C, Ellington C P. The three-dimensional leading-edge vortex of a 'hovering' model howkmoth [J]. Phil Trans R Soc Lond B, 1997, 352:329~340. [21] Birch J M, Dickinson M H. Spanwise flow and the attachment of the leading edge vortex on insect wings [J]. Nature, 2001, 412:729~733. [22] Liu H, Ellington C P, Kawachi K, et al. A computational fluid dynamic study of hawkmoth hovering [J]. J Exp Biol, 1998, 201:461~477. [23] Wang Z J. Vortex shedding and frequency selection in flapping flight [J]. J Fluid Mech, 2000a, 410:323~341. [24] Lan S L, Sun M. Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number [J]. Acta Mech, 2001, 149:135~147. [25] Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit-fly wing [J]. J Exp Biol, 2002a, 205:55~70. [26] Birch J M, Dickinson M H. The Influence of wing-wake interactions on the production of aerodynamic forces in flapping flight [J]. J Exp Biol, 2003, 206:2257~2272. [27] Fry S N, Sayaman R, Dickinson M H. The Aerodynamics of Free-Flight Maneuvers in Drosophila [J]. Science, 2003, 300:495-498. [28] Sun M, Du G. Lift and power requirements of hovering insects flight [J]. Acta Mech Sinica, 2003, 19(5):458~469. [29] Sane S P, Dickinson M H. The control of flight force by a flapping wing:lift and drag production [J]. J Exp Biol, 2001, 204:2607~2626. [30] Lehman F O, Dickinson H D. The changes in power requirements and muscle efficiency during elevated force production in the fruitfly Drosophila melanogaster [J]. J Exp Biol, 1997, 200:1133~1143. [31] Sun M, Tang J. Lift and power requirements of hovering flight in Drosophila virilis [J]. J Exp Biol, 2002b, 205:2413~2427. [32] Ellington C P, Machin K E, Casey T M. Oxygen consumption of bumblebees in forward flight [J]. Nature, 1990, 347:472~473. [33] Sun M, Wu J H. Lift generation and power requirements of fruitfly in forward flight with modeled wing motion [J]. J Exp Biol, 2003, 206:3065~3083. [34] Norberg R A. Hovering flight of the dragonfly Aeschna juncea L, kinematics and aerodynamics. In:Wu T Y, Brokaw C J, Brennen C. Swimming and Flying in Nature. NewYork, Plenum Press, 1975. 763~781. [35] Wakeling J M, Ellington C P. Dragonfly flight. Ⅱ. Velocities, accelerations and kinematics of flapping flight [J]. J Exp Biol, 1997b, 200:557~582. [36] Wakeling J M, Ellingtan C P. Dragonfly flight III. Lift and power requirements [J]. J Exp Biol, 1997a, 200:583~600. [37] Somps C, Luttges M. Dragonfly flight:novel uses of unsteady separation flows [J]. Science, 1985, 28:1326~1328. [38] Saharon D, Luttges M. Visualization of unsteady separated flow produced by mechanically driven dragonfly wing kinematics model [J]. AIAA Paper, 88-0569,1998. [39] Wang Z J. Two dimensional mechanism for insect hovering [J]. Physical Rev Lett, 2000b, 85:2216~2219. [40] Sun M, Lan S L. A study on the aerodynamics of a dragonfly in hovering flight [J]. Acta Mech Sinica, 2003, 19(6)(in Press)
点击查看大图
计量
- 文章访问数: 3479
- HTML全文浏览量: 66
- PDF下载量: 1802
- 被引次数: 0