Brief review of studies on the mechanical behavior of metallic foams
-
摘要: 对金属泡沫材料力学行为的研究文献进行了简要综述,重点介绍了最近几年该领域研究工作的进展,其中也包括国内学者在该领域的一些工作.这些工作主要讨论了金属泡沫材料的拉伸、压缩、能量吸收、动态冲击、失效准则、本构关系、蠕变、疲劳和断裂等力学性能.最后,给出了对该领域工作的一些展望.Abstract: A brief review of studies on the mechanical properties of metallic foams is given. The emphasis is placed on the development of investigations into mechanical properties of metallic foams in recent years, including some works of this field in our country. They are mainly concerned with the tensile and compressive behavior, energy absorption, dynamic impact, failure criterion and constitutive relation, creep, fatigue and fracture of these materials. Finally, some future development trends are also presented.
-
Key words:
- constitutive relation /
- creep /
- metallic foams /
- mechanical behavior /
- energy absorption /
- dynamic impact /
- failure criterion /
- fatigue and fracture
-
[1] Gibson L J,Ashby M F. Celluar solids:structure and properties[M].Oxford, Pergamon Press:1997 [2] 左孝青,杨晓源,李成华. 多孔泡沫金属研究进展[J].昆明理工大学学报,1997,22(1):91~95 Zuo Xiaoqing, Yang Xiaoyuan, Li Chenghua. Developments of research work on foamed metal[J]. Journal of Kunming University of Science and Technology, 1997,22(1):91~95(in Chinese) [3] 卢子兴,王 仁,黄筑平,等. 泡沫塑料力学性能研究综述[J]. 力学进展, 1996, 26(3):306~323 Lu Zixing, Wang Ren, Huang Zhuping, et al. A review of studieson the mechanical properties of foam plastics[J]. Advances in Mechanics,1996, 26(3):306~323(in Chinese) [4] Shaw M C, Sata T. The plastic behavior of cellular materials[J]. Int J Mech Sci, 1966, 8:469~478 [5] Thornton P H, Magee C L. The deformation of aluminum foams[J]. Metallur Trans, 1975, 6A(6):1253~1263 [6] Thornton P H, Magee C L. Deformation characteristics of Zinc foam[J]. Metallur Trans, 1975, 6A(9):1801~1807 [7] Friis E A, Lakes R S, Park J B. Negative Poisson's ratio polymeric and metallic foams[J]. J Mater Sci, 1988, 23:4406~4414 [8] Triantafillou T C, Zhang J, Shercliff T L, et al. Failure surfaces for cellular materials under multiaxial loads-II. Comparison of models with experiment[J]. Int J Mech Sci, 1989, 31(9):665~678 [9] Parkash O, Sang H, Embury J D. Structure and properties of Al-SiC foam[J]. Mater Sci Eng, 1995, A199(2):195~203 [10] Gui M C, Wang D B, Wu G J,et al. Deformation and damping behaviors of foamed Al-Si-SiCp composite[J]. Mater Sci Eng, 2000, A286(2):282~288 [11] Beals J T, Thompson M S. Density gradient effects on aluminium foam compression behaviour.J Mater Sci,1997, 32(13):3595~3600 [12] Yamada Y, Shimojima K, Sakaguchi Y,et al. Compressive properties of open-cellular SG91A Al and AZ91 Mg[J]. Mater Sci Eng, 1999, A272(2):455~458 [13] Yamada Y, Shimojima K, Sakaguchi Y,et al. Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure[J]. Mater Sci Eng, 2000, A280(1):225~228 [14] Yamada Y, Shimojima K, Mabuchi M,et al. Compressive deformation behavior of Al2O3 foam[J]. Mater Sci Eng, 2000, A277(1-2):213~217 [15] Park C, Nutt S R. PM synthesis and properties of steel foams[J]. Mater Sci Eng, 2000, A288(1):111~118 [16] Park C, Nutt S R. Anisotropy and strain localization in steel foam[J]. Mater Sci Eng, 2001, A299(1-2):68~74 [17] McCullough K Y G, Fleck N A, Ashby M F. Uniaxial stress-strain behaviour of aluminium alloy foams[J]. Acta Mater, 1999, 47(8):2323~2330 [18] Banhart J, Baumeister J. Deformation characteristics of metal foams. J Mater Sci, 1998, 33(6):1431~1440 [19] Bart-Smith H, Bastawros A F, Mumm D R, et al. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping[J]. Acta Mater, 1998, 46(10):3583~3592 [20] Nieh T G, Kinney J H, Wadsworth J,et al. Morphology and elastic properties of aluminum foams produced by a casting technique[J]. Scripta Mater, 1998, 38(10):1487~1494 [21] Nieh T G, Higashi K, Wadsworth J. Effect of cell morphology on the compressive properties of open-cell aluminum foams[J].Mater Sci Eng, 2000, A283(1-2):105~110 [22] Motz C, Pippan R. Deformation behaviour of closed-cell aluminium foams in tension[J].Acta Mater,2001,49(13):2463~2470 [23] Santosa S, Wierzbicki T. On the modeling of crush behavior of a closed-cell aluminum foam structure[J]. J Mech Phys Solids, 1998, 46(4):645~669 [24] Simone A E, Gibson L J. Aluminum foams produced by liquid-state processes[J].Acta Mater,1998, 46(9):3109~3123 [25] Simone A E, Gibson L J. Effects of solid distribution on the stiffness and strength of metallic foams[J].Acta Mater,1999,46(6):2139~2150 [26] Andrews E,Sanders W, Gibson L J. Compressive and tensile behaviour of aluminum foams[J]. Mater Sci Eng, 1999, A270(2):113~124 [27] Kovácik J, Simancík F. Aluminium foam-modulus of elasticity and electrical conductivity according to percolation theory[J]. Scripta Mater, 1998, 39(2):239~246 [28] Hucko B, Faria L. Material model of metallic cellular solids[J]. Computers & Structures, 1997, 62(6):1049~1057 [29] Han Fusheng, Zhu Zhengang. The mechanical behavior of foamed aluminum. J Mater Sci, 1999, 34(2):291~299 [30] 郑明军,何德坪,陈 锋. 多孔铝合金的压缩应力-应变特征及能量吸收性能[J]. 中国有色金属学报,2001, 11(S2):81~85 Zheng Mingjun, He Deping, Chen Feng. Compressive stress-strain behavior and energy absorption capability of porous aluminum alloy[J]. Journal of Nonferrous Metals, 2001, 11(S2):81~85(in Chinese) [31] 刘培生,付 超,李铁藩. 高孔率金属材料的抗拉强度[J].稀有金属材料与工程,2000, 29(2):94~100 Liu Peisheng, Fu Chao, Li Tiefan. Tensile strength of high-porosity metals[J]. Rare Metal Materials and Engineering, 2000, 29(2):94~100(in Chinese) [32] 王 曦,虞吉林. 泡沫铝的单向力学行为[J]. 实验力学,2001,16(4):438~443 Wang Xi, Yu Jilin. Uniaxial mechanical behavior of aluminum foam[J].Journal of Experimental Mechanics[J]. 2001,16(4):438~443(in Chinese) [33] 韩福生,朱震刚,刘长松. 泡沫Al压缩形变及能量吸收特征[J].物理学报,1998, 47(3):520~528 Han Fusheng, Zhu Zhengang, Liu Changsong. Compressive deformation and energy absorbing characteristics of foamed aluminum[J]. Acta Physica Sinica, 1998, 47(3):520~528(in Chinese) [34] 曾 斐,潘 艺,胡时胜. 泡沫铝缓冲吸能评估及其特性[J]. 爆炸与冲击,2002, 22(4):358~362 Zeng Fei, Pan Yi, Hu Shisheng. Evaluation of cushioning properties and energy absorption capability of foam aluminum[J]. Explosion and Shock Waves, 2002, 22(4):358~362(in Chinese) [35] Gradinger R, Rammerstorfer F G. On the influence of meso-inhomogeneities on the crush worthness of metal foams[J]. Acta Mater, 1999, 47(1):143~148 [36] Daxner T, B hm H J, Rammerstorfer F G. Mesoscopic simulation of inhomogeneous metallic foams with respect to energy absorption[J]. Computational Materials Science,1999, 16(1-4):60~69 [37] Mukai T, Kanahashi H, Miyoshi T, et al. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading[J]. Scripta Mater, 1999, 40(8):921~927 [38] Paul A, Ramamurty U. Strain rate sensitivity of a closed-cell aluminum foam[J]. Mater Sci Eng, 2000,A281(1-2):1~7 [39] Dannemann K A, Lankford J J. High strain rate compression of closed-cell aluminium foams[J].Material Science and Engineering,2000, A293(1-2):157~164 [40] Mukai T, Kanahashi H, Yamada Y, et al. Dynamic compressive behavior of an ultra-lightweight magnesium foam[J]. Scripta Mater, 1999, 41(4):365~371 [41] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J].Int J Impact Eng,2000, 24(3):277~298 [42] Ruan D, Lu G, Chen F L,et al. Compressive behaviour of aluminium foams at low and medium strain rates[J].Composite Structures,2002, 57(4):331~336 [43] Gioux G, McCormack T M, Gibson L J. Failure of aluminum foams under multiaxial loads[J]. Int J Mech Sci, 2000, 42(6):1097~1117 [44] Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams[J]. J Mech Phys Solids, 2000, 48(6-7):1253~1283 [45] Miller R E. A continuum plasticity model for the constitutive and indentation behaviour of foamed metal[J]. Int J Mech Sci, 2000, 42(4):729~754 [46] Andrews E W, Huang J S, Gibson L J. Creep behavior of a closed-cell aluminum foam[J]. Acta Mater, 1999, 47(10):2927~2935 [47] Andrews E W, Gibson L J, Ashby M F. The creep of cellular solids[J]. Acta Mater, 1999, 47(10):2853~2863 [48] Harte A M, Fleck N A, Ashby M F. Fatigue failure of an open cell aluminum alloy foam[J]. Acta Mater, 1999, 47(8):2511~2524 [49] Sugimura Y, Rabiei A, Evans A G, et al. Compression fatigue of a cellular Al alloy[J]. Mater Sci Eng, 1999, A269(1-2):38~48 [50] McCullough K Y G, Fleck N A, Ashby M F. Toughness of aluminium alloy foams[J]. Acta Mater, 1999, 47(8):2331~2343 [51] Olurin O B, Fleck N A, Ashby M F. Deformation and fracture of aluminium foams[J]. Mater Sci Eng, 2000, A291(1-2):136~146 [52] Fleck N A, Olurin O B, Chen C, et al. The effect of hole size upon the strength of metallic and polymeric foams[J]. J Mech Phys Solids, 2001, 49(9):2015~2030 [53] Andrews E W, Gibson L J. The influence of crack-like defects on the tensile strength of an open-cell Aluminum foam[J]. Scripta Mater, 2001, 44(7):1005~1010
点击查看大图
计量
- 文章访问数: 2743
- HTML全文浏览量: 84
- PDF下载量: 1874
- 被引次数: 0