Error analysis of high-aspect-ratio finite elements for 2-D boundary layer simulations
-
摘要: 针对大长宽比单元将传统的基于单元整体尺度的有限元误差估计扩展为基于单元不同方向尺度的误差估计;根据不同方向误差应该同量级的思想,得到了误差匹配准则.该准则可以作为网格划分的判据.根据这一匹配准则,提出了一种提高计算精度的方法——单向高次插值法.数值实验表明该误差估计是正确的,误差匹配准则作为网格划分的判据是有效的,采用合理的有限元插值逼近能够有效地减小计算误差,提高计算的精度和效率.Abstract: A new error analysis in finite element method, which is based on the element size in spatial directions respectively, was proposed. This analysis is different from the ordinary error analysis method, which is based on the overall size of elements. An error matching principle can be derived from the analysis presented here. The principle can be used in generating optimal grids and in analyzing the error of the calculation. A high precision finite element scheme was discussed upon the error matching principle, that uses the high order interpolation in the desired direction. The new error analysis method and the error matching principle were verified by the numerical tests. The results show that the proper grid sizes and right order of interpolation can minimize the error and improve the computational efficiency.
-
Key words:
- finite element method /
- error estimate /
- boundary layer
-
[1] 姜礼尚,庞之垣. 有限元方法及其理论基础[M] 北京:人民教育出版社, 1979 Jiang Lishang, Pang Zhiyuan. The theory fundamental of finite element method . Beijing:People's Education Press,1979(in Chinese) [2] Gordon W J, Hall C A. Transfinite element methods:Blending-function interpolation over arbitrary curved element domains[J] Numerical Mathematics, 1973, 21, 109~129 [3] Carey G F, Oden J T. Finite elements:A second course [M] Prentice-Hall, 1983 [4] 钱伟长. 奇异摄动理论及其在力学中的应用[M] 北京:科学出版社, 1981 Qian Weichang. The perturbation theory and application in mechanics[M] Beijing:Science Press,1981(in Chinese) [5] Isaacson E, Keller H. Analysis of numerical methods [M] New York:John Wiley & Sons,1966 [6] 章本照. 流体力学中的有限元方法[M] 北京:机械工业出版社,1986 Zhang Benzhao. The finite element method of fluid dynamics [M] eijing:China Machine Press,1986(in Chinese)
点击查看大图
计量
- 文章访问数: 3536
- HTML全文浏览量: 202
- PDF下载量: 1170
- 被引次数: 0