Interval Perturbation Method for Computing Regions Containing Complex Natural Frequencies of Structures
-
摘要: 利用区间数学研究具有误差或有界不确定性结构参数的非比例阻尼结构复特征值 所在区域问题.将误差或有界不确定性结构参数用区间定量化,这样,具有误差或有界不确 定性结构参数的非比例阻尼结构复特征值所在区域问题便可归结为实区间矩阵的广义特征值 问题.对于小的误差或有界不确定参数,所提出的求解实区间矩阵的广义特征值问题的区间 摄动法可以给出满足工程要求的结构固有频率所在的区域.
-
关键词:
- 固有频率 /
- 区间数学 /
- 摄动法 /
- 误差或有界不确定参数
Abstract: By interval mathematics, the problem on regions contain ing complex eigenvalues for structures with errors or uncertain but bounded para meters was studied. These parameters were described by interval numbers. The non -proportional damping structural eigenvalue problem with errors or uncertain bu t bounded parameters can be transformed into the generalized eigenvalue problem of interval matrice s, and the complex eigenvalues are regions containing natural frequencies of str uctures with errors or uncertain but bounded parameters. For small errors or unc ertain but bounded parameters, the interval perturbation method was presented fo r computing complex interval eigenvalues of the generalized interval eigenvalue p roblem, and the required regions containing natural frequencies of structures ma y be obtained. -
[1] 胡海昌. 多自由度结构固有振动理论[M]. 北京:科学出版社,1987 Hu Haichang. Natural vibration theory of structure with multiple degree of freed om[M]. Beijing:Science Press,1987(in Chinese) [2] 陈绍汀. 复固有频率的界限定理[J]. 力学学报, 1985, 17(4):324~328 Chen Shaoding. Bound theorem of matural complex frequency[J]. Journal of Mech anics, 1985,17(4):324~328(in Chinese) [3] Ram Y M,Braun S G. Upper and lower bounds for the natural fre quencies[J]. Journal of Sound and Vibration, 1990, 137(1):69~81 [4] Bodur I N, Marangoni R D. Upper and lower bounds to eigenvalues by we ighting function approximations[J]. J Solids Structures, 1983, 19(12):10 99~1114 [5] Qiu Z P, Chen S H, Elishakoff I. Natural frequencies of structures wi th uncertain but non-random parameters[J]. Journal of Optimization Theory and Applications, 1995, 86(3):669~683 [6] Qiu Z P, Elishakoff I. Anti-optimization of structures with large unce rtain-but-non-random parameters via interval analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1998,152(3,4):361~372 [7] Qiu Z P, Mueller P C,Frommer A. An approximate method for the standar d interval eigenvalue problem of real non-symmetric interval matrices[J]. Com munications in Numerical Methods in Engineering, 2001,(17):239~251 [8] Qiu Z P, Chen S H,Elishakoff I. Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters[J]. Cha o, Solitons & Fractals, 1996, 7(3):425~434 [9] Moore R E. Methods and applications of interval analysis[M]. London:Pr enice-Hall Inc, 1979 [10] Alefeld G, Herzberger J. Introductions to interval computations . New York:Academic Press, 1983
点击查看大图
计量
- 文章访问数: 2966
- HTML全文浏览量: 44
- PDF下载量: 14
- 被引次数: 0