Bifurcation of a Quadratic Integrable System under Quadratic Conservative Perturbations
-
摘要: 研究了一个具有同宿轨的二次可积系统在二次保守扰动下的分支现象.此时一阶Melnikov函数恒等于零,必须考虑二阶Melnikov函数,而在一阶Melnikov函数中不起作用的扰动参数在二阶Melnikov函数中却起着非常重要的作用,因此扰动部分极为复杂.在此借助于二阶Melnikov函数的计算公式及理论分析,建立了极限环分支定理,得到了在一阶Melnikov函数恒等于零,而二阶Melnikov函数不恒等于零时,可能分支出的极限环个数最大为2的结论.Abstract: The question on bifurcation of limit cycles in quadratic conservative perturbations of a quadratic integrable system is discussed. As a result of conservative perturbations, the first order Melnikov function for a perturbed system is identically equal to zero, so the second order Melnikov function has to be considered. The perturbation parameters which make no use in the first order Melnikov function may be important in the second order Melnikov function. Hence perturbed systems are more complicated. With the help of the formula for the second Melnikov function and theoretical analysis, the following result is obtained: if the first order Melnikov function for a perturbed system is identically equal to zero, and the second order Melnikov function for the perturbed system is not identically equal to zero, the system has at most two limit cycles.
-
Key words:
- limit cycles /
- disturbances /
- bifurcation /
- a quadratic integrable system
-
[1] Li B Y, Zhang Z F. A note of a G. S. Petrov-s result about the weakened 16th Hilbert problem[J]. J Math Anal Appl, 1995,190:489~516. [2]Iliev I D. Higher order Melnikov functions for degenerate cubic Hamiltonians[J].Adv Diff Eqs, 1996, 1(4):689~708. [3]彭临平. 一类具有同宿轨的二次可积系统的开折问题 . 北京:北京大学数学系, 1997. [4]Zoladk H. Quadratic systems with centers and their perturbations .J Differential Equations, 1994, 109:223~273. [5]Arnold V I. Geometrical methods in the theory of ordinary differential equations[M]. New York:Springer-verlag,1988. [6]He Y, Li C Z. On the number of limit cycles arising from perturbations of homoclinic loops of quadratic integrable systems[J].J Diff Eqs and Dynam Sys, 1997, 5:303~316. [7]Zhang Z F, Li C Z. On the number of limit cycles of a class of quadratic Hamiltonian systems under quadratic perturbations[J]. Adv in Math, 1997, 26(5):445~460. [8]张芷芬, 李承志, 郑志明,等. 向量场的分叉理论基础[M]. 北京:高等教育出版社, 1997.
点击查看大图
计量
- 文章访问数: 2935
- HTML全文浏览量: 41
- PDF下载量: 872
- 被引次数: 0