留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种前馈神经网络的变误差主动式学习算法

骆德汉 陈伟海

骆德汉, 陈伟海. 一种前馈神经网络的变误差主动式学习算法[J]. 北京航空航天大学学报, 1998, 24(3): 350-353.
引用本文: 骆德汉, 陈伟海. 一种前馈神经网络的变误差主动式学习算法[J]. 北京航空航天大学学报, 1998, 24(3): 350-353.
Luo Dehan, Chen Weihai. Active Back-propagation Algorithm Based on Adjusting Error for Multilayer Feed-forward Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(3): 350-353. (in Chinese)
Citation: Luo Dehan, Chen Weihai. Active Back-propagation Algorithm Based on Adjusting Error for Multilayer Feed-forward Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(3): 350-353. (in Chinese)

一种前馈神经网络的变误差主动式学习算法

详细信息
  • 中图分类号: TP 273; TN 912

Active Back-propagation Algorithm Based on Adjusting Error for Multilayer Feed-forward Neural Network

  • 摘要: 研究误差反向传播多层前馈神经网络的主动式学习方法.文章分析了目前用于训练前馈神经网络改进BP算法的特点和存在的不足,在此基础上提出逐次主动调整网络学习误差的网络训练思想,根据网络输出误差趋势,主动变化输出层的调整误差δpl,使W\+k\-\{ji}和θ\+k\-j在调整过程中受到每次学习效果信息的控制,从而得到一种主动式变误差的学习算法.实验表明,在训练多层前馈神经网络时,变误差主动式算法的学习效率比改进BP算法的学习效率有明显提高.

     

  • 1 .Rumelhart De, McClelland Jl. Learning internal representation by error propagation.In:Rumelhart De,McClelland Jl,eds.Parallel Distributed Processing——Explorations in the Microstructure of Cognition. Vol. 1.Cambridge MA:MIT Press,1986.318~362 2. Baba N. A new approach for finding the global minimum of error function of neural networks.Neural Networks,1989,2(2):367~373 3. Hornik K, Stinhcombe M, White H.Multilayer feedforward networks are universal approximators. Neural Networks,1989,2(2):359~366 4. Minai Aa, Williams Rd.Acceleration of back propagation through learning rate and momentum adaptation.In:IEEE,eds.Proceedings of the International Joint Conference on Neural Networks.California:San Diego,1990.676~679 5. Lang Kj, Witbrock Mj. Faster learning variations on back-propagation: an empirical study.In:Toure tzky Ds,Hinton Ge,Sejnowski Tj,eds.Proc Connectionist Models Summer School. San Mateo:Morgan Kaufmann, 1988.52~59 6. Riedmiller M, Braun H. A direct adaptative method for faster backpropagation learning: the RPROP Algorithm.In:IEEE,eds.Proceedings of International Neural Networks. San francisco, 1993.586~591 7. Shiffman W, Joost M, Werner R. Optimization of the back propagation algorithm for training multilayer perceptrons.Proc European Symposium on Artificial Neural Networks, ESANN 93. Brussels,1993.97~104
  • 加载中
计量
  • 文章访问数:  2948
  • HTML全文浏览量:  43
  • PDF下载量:  867
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-11-25
  • 网络出版日期:  1998-03-31

目录

    /

    返回文章
    返回
    常见问答