留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性系统的结构选择及其参数的集员辨识

和丽清 孙先仿 邱红专

和丽清, 孙先仿, 邱红专等 . 非线性系统的结构选择及其参数的集员辨识[J]. 北京航空航天大学学报, 2010, 36(10): 1189-1193.
引用本文: 和丽清, 孙先仿, 邱红专等 . 非线性系统的结构选择及其参数的集员辨识[J]. 北京航空航天大学学报, 2010, 36(10): 1189-1193.
He Liqing, Sun Xianfang, Qiu Hongzhuanet al. Structure selection and parameter set-membership identification for nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1189-1193. (in Chinese)
Citation: He Liqing, Sun Xianfang, Qiu Hongzhuanet al. Structure selection and parameter set-membership identification for nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1189-1193. (in Chinese)

非线性系统的结构选择及其参数的集员辨识

基金项目: 国家自然科学基金资助项目(60674030)
详细信息
    作者简介:

    和丽清(1979-),女,山西大同人,博士生,Heliqing@asee.buaa.edu.cn.

  • 中图分类号: TP 13

Structure selection and parameter set-membership identification for nonlinear systems

  • 摘要: 基于支持向量回归和RBF(Radial Basis Function)神经网络,研究了带有未知但有界噪声的非线性系统的集员辨识问题.推导了噪声界以及支持向量个数与ε-不敏感参数之间的关系,给出了利用噪声界选择ε-不敏感参数的方法.描述了通过支持向量回归选择RBF神经网络规模的方法.该方法以Gaussian核函数作为径向基函数,支持向量作为径向基函数的中心构建RBF神经网络.运用改进的OBE(Optimal Bounding Ellipsoid)算法对RBF神经网络的权值进行辨识,得到与给定输入输出数据和噪声界序列一致的一类RBF神经网络.仿真算例验证了算法的有效性.

     

  • [1] Huang Y F.A recursive estimation algorithm using selective updating for spectral analysis and adaptive signal processing [J].IEEE Transaction on Acoustics, Speech, and Signal Processing, 1986, 34 (5): 1331-1334 [2] Belforte G, Bona B.An improved parameter identification algorithm for signals with unknown-but-bounded errors // Barker H A, Young P C.7th IFAC/IFORS Symposium on Identification and System Parameter Estimation.York: Pergamon Press, 1985: 1507-1512 [3] Deller J R Jr, Gollamudi S, Nagaraj S, et al.Convergence analysis of the quasi-OBE algorithm and related performance issues[J].International Journal of Adaptive Control and Signal Processing, 2007, 21(6):499 -527 [4] Chisci L, Garulli A,Zappa G.Recursive state bounding by parallelotopes[J].Automatica, 1996, 32(7):1049-1055 [5] Sun X F, Fan Y Z.Guaranteed sensor fault detection and isolation via recursive rectangular parallelepiped bounding in state-set estimation //Proc 3rd ASCC.Shanghai: , 2000: 3041-3046 [6] Alamo T, Bravo J M,Camacho E F.Guaranteed state estimation by zonotopes[J].Automatica, 2005, 41(6):1035-1043 [7] Walter E,Piet-lahanier H.Exact recursive polyhedral description of the feasible parameter set for bounded-error models[J].IEEE Transactions on Automatic Control, 1989, 34(8): 911-915 [8] Kieffer M,Walter E.Interval analysis for guaranteed non-linear parameter and state estimation[J].Mathematical and Computer Modelling of Dynamical Systems, 2005, 11(2): 171-181 [9] Alamo T, Bravo J M, Redondo M J, et al.A set-membership state estimation algorithm based on DC functions [J].Automatica, 2008, 44(1):216-224 [10] Keesman K J,Stappers R.Nonlinear set-membership estimation: a support vector machine approach[J].Journal of Inverse and Ill-posed Problem, 2004, 12(1): 27-41 [11] Scholte E,Campbell M E.A nonlinear set-membership filter for on-line application[J].International Journal of Robust and Nonlinear Control,2003, 13(15):1337-1358 [12] Cristianini N, Shawe-Taylor J.An introduction to support vector machines and other kernel-based learning methods[M].New York:Cambridge University Press, 2000: 30-32, 114-118
  • 加载中
计量
  • 文章访问数:  3811
  • HTML全文浏览量:  47
  • PDF下载量:  954
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-31
  • 网络出版日期:  2010-10-31

目录

    /

    返回文章
    返回
    常见问答