留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀采样系统时基失真的一种新评价方法

梁志国 孟晓风

梁志国, 孟晓风. 非均匀采样系统时基失真的一种新评价方法[J]. 北京航空航天大学学报, 2010, 36(10): 1203-1206.
引用本文: 梁志国, 孟晓风. 非均匀采样系统时基失真的一种新评价方法[J]. 北京航空航天大学学报, 2010, 36(10): 1203-1206.
Liang Zhiguo, Meng Xiaofeng. Novel evaluation method of time base distortion of nonuniformly sampling data acquisition systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1203-1206. (in Chinese)
Citation: Liang Zhiguo, Meng Xiaofeng. Novel evaluation method of time base distortion of nonuniformly sampling data acquisition systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1203-1206. (in Chinese)

非均匀采样系统时基失真的一种新评价方法

详细信息
    作者简介:

    梁志国(1962-),男,黑龙江巴彦人,博士生,lzg304@sina.com.

  • 中图分类号: TM 930.114

Novel evaluation method of time base distortion of nonuniformly sampling data acquisition systems

  • 摘要: 提出了在多A/D合成采样系统这种非均匀采样系统中,使用时基微分非线性和时基积分非线性概念评价采样时基失真的新方法.使用正弦波激励系统,将各个子A/D的数据分别抽取形成子抽样序列,用最小二乘正弦波曲线拟合法,获得各个子抽样序列初始相位差,该相位差对应的时间差,即是各个子A/D间的采样延迟时间,它们的一致性,即是系统的采样均匀性,体现了时基失真特性,用时基微分非线性和时基积分非线性描述.在一组仿真数据上进行的实验验证了方法的正确性.在数字存储示波器的实测数据上进行的实验验证了方法的可行性.方法可以用来评价非均匀采样系统的采样时基失真.

     

  • [1] Souders T M,Flach D R,Hagwood C,et al.The effects of timing jitter in sampling systems[J].IEEE Transactions on Instrumentation and Measurement,1990,39(1): 80-85 [2] Wagdy M F,Awad S S.Effect of sampling jitter on some sine wave measurements[J].IEEE Transactions on Instrumentation and Measurement,1990,39(1):86-89 [3] Schoukens J,Louage F,Rolain Y.Study of the influence of clock instabilities in synchronized data acquisition ystems[J].IEEE Transactions on Instrumentation and Measurement,1996,45(2):601-604 [4] Stenbakken G N,Liu D,Starzyk J A,et al.Nonrandom quantization errors in timebases[J].IEEE Transactions on Instrumentation and Measurement,2001,50(4):888-892 [5] Kalashnikov A N,Challis R E,Unwin M E,et al.Effects of frame jitter in data acquisition systems[J].IEEE Transactions on Instrumentation and Measurement,2005,54(6):2177-2183 [6] Ridder F D,Pintelon R,Schoukens J,et al.Reduction of the gibbs phenomenon applied on nonharmonic time base distortions[J].IEEE Transactions on Instrumentation and Measurement,2005,54(3):1118-1125 [7] Chang C L,Huang P S,Tu T M.Aperture jitter of sampling system in AWGN and fading channels[J].IEEE Transactions on Instrumentation and Measurement,2007,56(3):831-839 [8] Souders T M,et al.IEEE Std 1057—1994,IEEE Standard for Digitizing Waveform Recorders[S] [9] Verspecht J.Accurate spectral estimation based on measurements with a distorted-time base digitizer[J].IEEE Transactions on Instrumentation and Measurement,1994,43(2):210-215 [10] Stenbakken G N,Deyst J P.Time-base nonlinearity determination using iterated sine-fit analysis[J].IEEE Transactions on Instrumentation and Measurement,1998,47(5):1056-1061 [11] Wang C M,Hale P D,Coakley K J.Least-squares estimation of time-base distortion of sampling oscilloscopes[J].IEEE Transactions on Instrumentation and Measurement,1999,48(6):1324-1332 [12] Jenq Y C.Digital spectra of nonuniformly sampled signals:fundamentals and high-speed waveform digitizers[J].IEEE Transactions on Instrumentation and Measurement,1988,37(2):245-251 [13] Jenq Y C.Digital spectra of nonuniformly sampled signals:digital look-up tunable sinusoidal oscillators[J].IEEE Transactions on Instrumentation and Measurement,1988,37(3):358-362 [14] Jenq Y C.Digital spectra of nonuniformly sampled signals:a robust sampling time offset estimation algorithm for ultra high-speed waveform digitizers using interleaving[J].IEEE Transactions on Instrumentation and Measurement,1990,39(1):71-75 [15] Attivissimo F,Nisio A D,Giaquinto N,et al.Measuring time base distortion in analog-memory sampling digitizers[J].IEEE Transactions on Instrumentation and Measurement,2008,57 (1):55-62 [16] Barford L.Filtering of randomly sampled time-stamped measurement[J].IEEE Transactions on Instrumentation and Measurement,2008,57(2):222-227 [17] Jeng Y C,Cheng L.Digital spectrum of a nonuniformly sampled two-dimensional signal and its reconstruction[J].IEEE Transactions on Instrumentation and Measurement,2005,54 (3):1180-1187 [18] Kazakov V A,Rodriguez D S.Sampling-reconstruction procedure of Gaussian processes with jitter characterized by the beta distribution[J].IEEE Transactions on Instrumentation and Measurement,2007,56(5):1814-1824 [19] Deyst J P,Souders T M,Solomon O M J.Bounds on least-squares four-parameter sine-fit errors due to harmonic distortion and noise[J].IEEE Transactions on Instrumentation and Measurement, 1995,44(3):637-642 [20] 梁志国.通道间延迟时间差的测量不确定度[J].计量学报,2005,26(4):354-359 Liang Zhiguo.The measurement uncertainty of delay between channels[J].Acta Metrologica Sinica, 2005,26(4):354-359 (in Chinese) [21] Liang Z G,Zhu J J.A digital filter for the single frequency sinusoid series[J].Transaction of Nanjing University of Aeronautics & Astronautics,1999,16(2):14-16 [22] 梁志国,朱济杰,孙璟宇.正弦信号总失真度的一种精确评价方法[J].计量学报,2003,24(2):144-148 Liang Zhiguo ,Zhu Jijie ,Sun Jingyu .A precisely evaluation method of the distortion of sine wave signal generators[J].Acta Metrologica Sinica,2003,24(2):144-148(in Chinese) [23] 梁志国,周艳丽,沈文.正弦波拟合法评价数据采集系统通道采集速率[J].数据采集与处理,1997,12(4):328-333 Liang Zhiguo,Zhou Yanli,Shen Wen.Using sinuous curve-fitting method to evaluate the rate of data acquisition systems[J].Journal of Data Acquisition & Processing,1997,12(4):328-333 (in Chinese)
  • 加载中
计量
  • 文章访问数:  2927
  • HTML全文浏览量:  231
  • PDF下载量:  1108
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-14
  • 网络出版日期:  2010-10-31

目录

    /

    返回文章
    返回
    常见问答