留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EMD与LS-SVM的刀具磨损识别方法

关山 王龙山 聂鹏

关山, 王龙山, 聂鹏等 . 基于EMD与LS-SVM的刀具磨损识别方法[J]. 北京航空航天大学学报, 2011, 37(2): 144-148.
引用本文: 关山, 王龙山, 聂鹏等 . 基于EMD与LS-SVM的刀具磨损识别方法[J]. 北京航空航天大学学报, 2011, 37(2): 144-148.
Guan Shan, Wang Longshan, Nie Penget al. Identification method of tool wear based on empirical mode decomposition and least squares support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 144-148. (in Chinese)
Citation: Guan Shan, Wang Longshan, Nie Penget al. Identification method of tool wear based on empirical mode decomposition and least squares support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 144-148. (in Chinese)

基于EMD与LS-SVM的刀具磨损识别方法

基金项目: 辽宁省教育厅重点实验室资助项目(LS2010117)
详细信息
  • 中图分类号: TH 165.3

Identification method of tool wear based on empirical mode decomposition and least squares support vector machine

  • 摘要: 针对刀具磨损声发射信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了基于经验模态分解和最小二乘支持向量机的刀具磨损状态识别方法.首先对声发射信号进行经验模态分解,将其分解为若干个固有模态函数之和,然后分别对每一个固有模态函数进行自回归建模,最后提取每一个自回归模型的系数组成特征向量,特征向量被分为两组,一组用于对最小二乘支持向量机训练,另一组用于识别刀具磨损状态.试验结果表明:该方法能很好地识别刀具磨损状态,与BP神经网络相比具有更高的识别率.

     

  • [1] Li Xiaoli.A brief review:acoustic emission method for tool wear monitoring during turning [J].International Journal of Machine Tool & Manufacture,2002,42:157-165 [2] Jemielniak K,Bombinski S.Tool condition monitoring in micromilling base on hierarchical integration of signal measures [J].CIPP Annals Manufacturing Technology 2008,57:121-124 [3] 王海丽,马春翔,邵华,等.车削过程中刀具磨损和破损状态的自动识别[J].上海交通大学学报,2006,40(12):2057-2062 Wang Haili,Ma Chunxiang,Shao Hua,et al.The tool wear and breakage monitoring in turning using neural network [J].Journal of Shanghai Jiaotong University,2006,40(12):2057-2062 (in Chinese) [4] 高宏力.切削加工过程中刀具磨损的智能监测技术研究 .成都:西南交通大学机械工程学院,2005 Gao Hongli.The investigation of intelligent tool wear monitoring techniques for metal cutting process .ChengDu:School of Mechanical Engineering Southwest Jiaotong University,2005 (in Chinese) [5] Huang N E,Shen Z,Long S R,et al.The empirical modedecomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London series A:Mathematical and Physical Sciences,1998,454:903-995 [6] 孙斌,黄胜全,周云龙,等.一种基于经验模式分解的气液两相流流型识别方法[J].仪器仪表学报,2008,29(5):1011-1015 Sun Bin,Huang Shengquan,Zhou Yunlong,et al.Identification method of gas-liquid two-phase flow regime based on empirical mode decomposition[J].Chinese Journal of Scientific Instrument,2008,29(5):1011-1015 (in Chinese) [7] 行鸿彦,许瑞庆,王长松.基于经验模态分解的脉搏信号特征研究[J].仪器仪表学报,2009,30(3):596-602 Xing Hongyan,Xu Ruiqing,Wang Changsong.Pulse signal feature research based on empirical mode decomposition[J].Chinese Journal of Scientific Instrument,2009,30(3):596-602 (in Chinese) [8] Suyken J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300 [9] 郭新辰.最小二乘支持向量机算法及应用研究 .吉林:吉林大学计算机科学与技术学院,2008 Guo Xinchen.Study on least square support vector machine algorithms and their application .Jilin:College of Computer Science and Technology,Jilin University,2008 (in Chinese) [10] Scheffer C,Heyns P S.Wear monitoring in turning operations using vibration and strain measurements[J].Mechanical Systems and Signal Processing,2001,15(6):1185-1202 [11] 贾嵘,王小宇,张丽,等.基于EMD和AR模型的水轮机尾水管动态特征信息提取[J].电力系统自动化,2006,30(22):77-80 Jia Rong,Wang Xiaoyu,Zhang Li,et al.EMD and AR model based dynamic characteristic extraction of the draft tube of hydraulic turbines[J].Automation of Electric Power Systems,2006,30(22):77-80(in Chinese)
  • 加载中
计量
  • 文章访问数:  3072
  • HTML全文浏览量:  54
  • PDF下载量:  815
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-03
  • 网络出版日期:  2011-02-28

目录

    /

    返回文章
    返回
    常见问答