留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胸鳍扑翼式机器鱼的设计及水动力实验

高俊 毕树生 李吉 蔡月日

高俊, 毕树生, 李吉, 等 . 胸鳍扑翼式机器鱼的设计及水动力实验[J]. 北京航空航天大学学报, 2011, 37(3): 344-350.
引用本文: 高俊, 毕树生, 李吉, 等 . 胸鳍扑翼式机器鱼的设计及水动力实验[J]. 北京航空航天大学学报, 2011, 37(3): 344-350.
Gao Jun, Bi Shushing, Li Ji, et al. Design and hydrodynamic experiments on robotic fish with oscillation pectoral fins[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 344-350. (in Chinese)
Citation: Gao Jun, Bi Shushing, Li Ji, et al. Design and hydrodynamic experiments on robotic fish with oscillation pectoral fins[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 344-350. (in Chinese)

胸鳍扑翼式机器鱼的设计及水动力实验

详细信息
  • 中图分类号: TP 242.3

Design and hydrodynamic experiments on robotic fish with oscillation pectoral fins

  • 摘要: 提出了一种基于胸鳍拍动推进的仿生机器鱼的设计模型,并对其进行了水动力实验研究.首先根据仿生对象的胸鳍运动和结构特点设计了由直流伺服电机驱动的扑翼式机器鱼,然后设计了推力测试实验装置,在北京航空航天大学机器人所的低速水洞中完成了机器鱼的推力和功耗测试实验,获得了推力系数和效率随Sr(斯特劳哈尔数)变化的曲线.实验结果表明最大推力系数和效率都在Sr=0.4时达到,该结果与前人关于游动和飞行生物保持高效推进时Sr的范围一致.机器鱼的自由航行实验进一步验证了水洞测力实验结果,最大航行速度可达0.64 m/s,约1.5倍身长比,相比国内外的同类仿生机器鱼具有较大的速度优势.实验结果表明:该仿生设计模型可以很好地模拟牛鼻鲼的推进方式,较大提高胸鳍扑翼式机器鱼的速度,为仿生水下航行器的设计提供了一种思路.

     

  • [1] Webb P W.The biology of fish swimming:in mechanics and physiology of animal swimming[M].Cambridge:Cambridge University Press,1994:12-14 [2] Lane M S D M,Davies J B C.Review of fish swimming modes for aquatic locomotion[J].IEEE Journal of Oceanic Engineering,1999,24(2):237-252 [3] Rosenberger L J.Pectoral fin locomotion in batoid fishes:undulation versus oscillation[J].The Journal of Experimental Biology,2001,204:379–394 [4] 沈林成,王光明.仿鱼长鳍波动推进器研究的进展和分析[J].国防科技大学学报,2005,27(4):96-100 Shen Lincheng,Wang Guangming.The progress and analysis of the research on the underwater biomimetic propulsor employing the long-fin undulations[J].Journal of National University of Defense Technology,2005,27(4):96-100(in Chinese) [5] Boileau R,Fan Lilian,Moore T.Mechanization of rajiform swimming motion .0519,2002 [6] Punning A,Anton M,Kruusmaa M,et al.Towards a biomimetic EAP robot //Proceedings of the International IEEE Conference on Mechatronics and Robotics.Aachen,Germany:IEEE,2004:241-245 [7] Koichi Suzumori,Satoshi Endo,Takefumi Kanda, et al.A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot //IEEE International Conference on Robotics and Automation Roma.Italy:IEEE,2007:10-14 [8] Wang Zhenlong,Wang Yangwei,Li Jian,et al.A micro biomimetic manta ray robot fish actuated by SMA //Proceeding of the 2009 IEEE Robio.Guilin,China:IEEE,2009:1809-1813 [9] Yang Shaobo,Qiu Jing,Han Xiaoyun.Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish[J].Journal of Bionic Engineering,2009,6(2):174-179 [10] Knoller R.Die gesetze des luftwiderstandes[J].Z Flugtech Motorluftschi,1909,1(1):1-7 [11] Betz A.Ein Beitrag zur Erklarung des Segelfluges[J].Z Flugtech Motorluftschi,1912,3(1):269-272 [12] Von Karman T,Burgers J M.General aerodynamic theory:perfect fluids,aerodynamic theory[M].Division E,Vol.2.Berlin:Julius-Springer,1943 [13] Freymuth P.Propulsive vortical signature of plunging and pitching airfoils[J].AIAA Journal,1988,26(7):881-883 [14] Triantafyllou G S,Triantafyllou M S,Gopalkrishnan R.Wake mechanics for thrust generation in oscillating foils[J].Physics of Fluids,1991,3(12):2835-2837 [15] Triantafyllou M S,Triantafyllou G S,Yue D K P.Hydrodynamics of fish swimming[J].Fluid Mech,2000,32(1):33-53 [16] Taylor G K,Robert L N,Thomas A L R.Flying and swimming animals cruise at a Strouhal number tuned for high power effciency[J].Nature,2003,425:707-711 [17] Schaefer J T,Adam P S.Batoid wing skeletal structure:novel morphologies,mechanical implications,and phylogenetic patterns[J].Journal of Morphology,2005,264:298-313 [18] Wang Z J.Vortex shedding and frequency selection in flapping flight[J].Fluid Mech,2000,410(1):323-341
  • 加载中
计量
  • 文章访问数:  2984
  • HTML全文浏览量:  279
  • PDF下载量:  1032
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-25
  • 网络出版日期:  2011-03-31

目录

    /

    返回文章
    返回
    常见问答