留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利于翼型优化设计的超临界翼型参数化方法

邓金秋 冯仁忠

邓金秋, 冯仁忠. 利于翼型优化设计的超临界翼型参数化方法[J]. 北京航空航天大学学报, 2011, 37(3): 368-373.
引用本文: 邓金秋, 冯仁忠. 利于翼型优化设计的超临界翼型参数化方法[J]. 北京航空航天大学学报, 2011, 37(3): 368-373.
Deng Jinqiu, Feng Renzhong. Supercritical airfoil parameterization method feasible to optimum design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 368-373. (in Chinese)
Citation: Deng Jinqiu, Feng Renzhong. Supercritical airfoil parameterization method feasible to optimum design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 368-373. (in Chinese)

利于翼型优化设计的超临界翼型参数化方法

详细信息
    作者简介:

    邓金秋(1988-),男,北京人,硕士生,deng.jinqiu@gmail.com.

  • 中图分类号: V 211.3

Supercritical airfoil parameterization method feasible to optimum design

  • 摘要: 为减少超临界翼型优化中的设计变量,消除优化结果的不光顺现象、保证C2连续,在优化过程中控制翼型几何特性的变化范围,设计出了由4条首尾相接的有理Bézier曲线表示的超临界翼型的翼型参数化方法,该方法对翼型数据的参数化过程中主要运用了Bézier曲线拟合算法与SPSA(Simultaneous Perturbation Stochastic Approximation)优化算法,并在Bézier曲线拟合算法中使用了有别于常用方法的数据点参数选择方法.将这种超临界翼型参数化方法与优化算法结合便可实现翼型优化设计,其中的设计变量为21个,优化结果不仅光顺且满足C2条件,通过设定设计变量变化范围便可控制相应的翼型前缘半径、上下弦最高最低点的位置与曲率、尾部契角等几何特征.

     

  • [1] 刘周,朱自强,付鸿雁,等.高升阻比翼型的设计[J].空气动力学学报,2004,22(4):410-414 Liu Zhou,Zhu Ziqiang,Fu Hongyan,et al.Design of airfoil with high ratio of lift over drag[J].Acta Aerodynamica Sinica,2004,22(4):410-414(in Chinese) [2] 王晓璐,朱自强,刘周.基于N-S方程的翼型双设计点双目标优化设计[J].北京航空航天大学学报,2006,32(5):503-507 Wang Xiaolu,Zhu Ziqiang,Liu Zhou.Bi-point/bi-objective optimization design of ailfoil using N-S equations[J].Journal of Beijing University of Aeronautics and Astronautics,2006,32(5):503-507(in Chinese) [3] 周涛,张淼,李亚林.基于全速势方程的超临界翼型设计[J].航空计算技术,2009,39(4):58-64 Zhou Tao,Zhang Miao,Li Yalin.Supercritical airfoil design based on full potential equations[J].Aeronautical Computer Technique,2009,39(4):58-64(in Chinese) [4] Khurana M,Winarto H.Application of swarm approach and artificial neural networks for airfoil shape optimization .AIAA-2008-5954,2008 [5] Heine B,Mack S.Aerodynamic scaling of general aviation airfoil for low Reynolds number application .AIAA-2008-4410,2008 [6] Padulo M,Maginot J.Airfoil design under uncertainty with robust geometric parameterization .AIAA-2009-2270,2009 [7] Haderlie J,Crossley W.A parametric approach to supercritical airfoil design optimization .AIAA-2009-6950,2009 [8] Lepine J,Guibault F,Trepanier J Y,et al.Optimized nonuniform rational B-spline geometrical representation for aerodynamic design of wings[J].AIAA,2001,39(11):570-577 [9] Hicks R M,Hennet P A.Wing design by numerical optimization[J].Journal of Aircraft,1978,15(7):407-412 [10] Sobester A,Keane A J.Airfoil design via Cubic splines-ferguson-s curves revisited .AIAA 2007-2881,2007 [11] Song Wenbin,Keane A J.A study of shape parameterization methods for airfoil optimization .AIAA 2003-4482,2004 [12] Harris C D.NASA supercritical airfoils a matrix of family-related airfoils .NASA Technical Paper 2969,1990 [13] Farin G E.Curves and surfaces for computer-aided geometric design[M].4.San Diego:Academic Press,1997:53-56,172-224 [14] Spall J C.Implementation of the simultaneous perturbation algorithm for stochastic optimization[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(3):817-823 [15] Song Qing,Spall J C,Ni Jie.Robust neural network tracking controller using simultaneous perturbation stochastic approximation[J].Neural Networks IEEE Transactions,2008,19(5):817-835
  • 加载中
计量
  • 文章访问数:  3718
  • HTML全文浏览量:  287
  • PDF下载量:  1051
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-25
  • 网络出版日期:  2011-03-31

目录

    /

    返回文章
    返回
    常见问答