留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非完整链式系统的全局连续K指数镇定

李明军 马保离

李明军, 马保离. 非完整链式系统的全局连续K指数镇定[J]. 北京航空航天大学学报, 2011, 37(4): 452-457.
引用本文: 李明军, 马保离. 非完整链式系统的全局连续K指数镇定[J]. 北京航空航天大学学报, 2011, 37(4): 452-457.
Li Mingjun, Ma Baoli. Global K-exponential stabilization of nonholonomic chained systems by continuous feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(4): 452-457. (in Chinese)
Citation: Li Mingjun, Ma Baoli. Global K-exponential stabilization of nonholonomic chained systems by continuous feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(4): 452-457. (in Chinese)

非完整链式系统的全局连续K指数镇定

基金项目: 国家自然科学基金资助项目(60874012)
详细信息
    作者简介:

    李明军(1981-),男,湖南永兴人,博士生,limingjun_8888@163.com.

  • 中图分类号: TP 13

Global K-exponential stabilization of nonholonomic chained systems by continuous feedback

  • 摘要: 为非完整链式系统提出了两种全局连续反馈控制律,即连续时变反馈控制律和动态时不变反馈控制律.第1种控制律通过引入一个与状态初值有关的指数衰减项,来保证控制律的连续性和渐近性.第2种控制律通过引入一个可自由设定初值的辅助状态,来保证系统的可控性以及控制律的连续性和渐近性.这两种控制律可以保证系统所有状态以指数速度渐近地、连续地收敛到原点,克服了以往控制律不能同时具有连续性、渐近性和指数收敛速度的缺陷.所得控制律应用于移动机器人系统和一个4维链式系统的镇定,仿真结果表明:状态轨迹和控制轨迹的光滑度和收敛速度都要优于以往控制律.

     

  • [1] Kolmanovsky I,McClamroch N H.Developments in nonholonomic control problems[J].IEEE Control Systems Magazine,1995,15(6):20-36 [2] Brockett R W,Millman R S,Sussmann H J.Differential geometric control theory[M].Boston:Birkhauser,1983:181-191 [3] Samson C.Velocity and torque feedback control of a nonholonomic cart //Advanced Robot Control Proc Int Workshop Nonlinear Adaptive Control:Issues in Robotics.Grenoble:Springer,1991:125-151 [4] Coron J M.Global asymptotic stabilization for controllable systems without drift[J].Math Contr Sig Syst,1992,5:295-312 [5] Jiang Z P.Iterative design of time-varying stabilizers for multi-input systems in chained form[J].Systems & Control Letters,1996,28(5):255-262 [6] Walsh G C,Bushnell L G.Stabilization of multiple input chained form control systems[J].Systems & Control Letters,1995,25(3):227-234 [7] Sordalen O J,Egeland O.Exponential stabilization of nonholonomic chained systems[J].IEEE Translation on Automatic Control,1995,40(1):35-39 [8] Li Chuanfeng,Wang Chaoli.Robust stabilization of kinematic systems of uncertain nonholonomic mobile robots //Proceedings of the 6th World Congress on Intelligent Control and Automation.Piscataway,N J:IEEE,2006:1142-1146 [9] Ma B L,Huo Wei.Smooth time-varying exponential stabilization of nonholonomic chained systems[J].Acta Automatica Sinica,2003,29(2):301-305 [10] Tian Yuping,Li Shihua.Global smooth time-varying exponential stabilization of nonholonomic chained systems //Proceedings of the 3rd World Congress Intelligent Control and Automation.Hefei,China:University of Science and Technology of China Press,2000:3328-3342 [11] Tian Yuping,Li Shihua.Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control[J].Automatica,2002,38(7):1139-1146 [12] Wang Jing,Qu Zhihua,Hull A Richard,et al.Cascaded feedback linearization and its application to stabilization of nonholonomic systems [J].Systems & Control Letters,2007,56(4):285-295 [13] Lee T C,Jiang Z P.On uniform global asymptotic stability of nonlinear discrete-time systems with applications[J].IEEE Transactions on Automatic Control,2006,51(10):1644-1660 [14] Marchand N,Alamir M.Discontinuous exponential stabilization of chained form systems[J].Automatica,2003,39(2):343-348 [15] Ju Guiling,Wu Yuqiang,Sun Weihai.Adaptive output feedback asymptotic stabilization of nonholonomic systems with uncertainties[J].Nonlinear Analysis,2009,71(11):5106-5117 [16] Zheng Xiuyun,Wu Yuqiang.Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts [J].Nonlinear Analysis,2009,70(2):904-920 [17] Sun Zhengdong,Ge S S,Huo Wei,et al.Stabilization of nonholonomic chained systems via nonregular feedback linearization[J].Systems & Control Letters,2001,44(4):279-289
  • 加载中
计量
  • 文章访问数:  3612
  • HTML全文浏览量:  56
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-11
  • 网络出版日期:  2011-04-30

目录

    /

    返回文章
    返回
    常见问答