Thermodynamic model and numerical simulation of high altitude balloon ascending process
-
摘要: 基于对高空气球热力学环境的分析,建立了热力学与动力学耦合的高空气球动力学模型;并采用该模型对某高空气球的上升与驻留过程进行仿真分析.结果表明:高空气球上升过程中内部氦气存在"超冷"现象,其中平流层区域"超冷"明显,氦气平均温差为-19 K;由于"超冷",其上升速度曲线呈双"V"形变化;强太阳辐射与弱对流环境使驻留过程中氦气呈现"超热"现象,平衡时氦气平均温度比环境温度高39 K,球内氦气超压648.8 Pa.数值仿真的速度、平均温度变化规律与相关飞行试验数据相吻合,说明该仿真模型是有效的.Abstract: Based on the analysis of the high-altitude balloon thermodynamic environment, a coupling dynamic model was established to describe its thermodynamics and kinetics. The model was used to simulate the ascending and floating processes of a high altitude balloon. The results show that the inner helium temperature will present "supercool" during its ascending process, and "supercool" is more pronounced during the stratosphere region, with the inner helium temperature 19 K below the surrounding air temperature. Because of "supercool", its ascending velocity profile take on double "V" shape. The inner helium temperature presents "superheat" during the daytime floating process due to strong sun radiation and weak convection with air, and the inner helium average temperature is 39 K higher than that of the surrounding air, with 648.8 Pa super-pressure. The ascending velocity profile and inner helium temperature profile of the numerical simulation good agreement with experimental flight data shows that the established model is accurate.
-
Key words:
- high altitude balloon /
- thermodynamic model /
- thermal radiation /
- dynamic model /
- numerical simulation
-
[1] Colozza A.Initial feasibility assessment of a high altitude long-endurance airship .NASA/CR-2003-212724,2003 [2] Colozza A,Dolce J L.High-altitude long-endurance airships for coastal surveillance .NASA/TM-2005-213427,2005 [3] Harada K,Eguchi K,Sano M,et al.Experimental study of thermal modeling for stratospheric platform airships .AIAA 2003-6833,2005 [4] Kreider J F.Mathematical of high altitude balloon performance .AIAA 75-1385,1975 [5] Cathey H M.Scientific balloon effective radiative properties[J].Advances in Space Research,1998,21(7):979-982 [6] Cathey H M.Advances in the thermal analysis of scientific balloons .AIAA 1996-9605,1996 [7] Farley R E.Balloon ascent:3-D simulation tool for the ascent and float of high altitude balloons .AIAA 2005-7412,2005 [8] 夏新林,李德富,杨小川.平流层浮空器的热特性与研究现状[J].航空学报,2009,30(4):577-583 Xia Xinlin,Li Defu,Yang Xiaochuan.Thermal characteristics of stratospheric aerostats and their research[J].Acta Aeronautica et Astronautica Sinica,2009,30(4):577-583 (in Chinese) [9] 侯增祺,胡金刚.航天器热控制技术:原理及其运用[M].北京:中国科技出版社,2007 Hou Zengqi,Hu Jingang.Spacecraft thermal control technology:principle and application[M].Beijing:China Science and Technology Press,2007 (in Chinese) [10] Goswami D Y,Kreith F,Kreider J F.Principles of solar engineering[M].Philadelphia,PA:Tag lor Francis,1978 [11] 吴子牛.空气动力学:下册[M].北京:清华大学出版社,2008 Wu Ziniu.Aerodynamics:part 2[M].Beijing:Tsinghua University Press,2008(in Chinese) [12] 《航空气动力手册》编写组.航空气动力手册:第一册[M].国防工业出版社,1982:23-28 Editorial office of manual of aerodynamics.Manual of aerodynamics:part 1[M].Beijing:National Defence Industrial Press,1982:23-28(in Chinese) [13] 杨桂通.弹性力学[M].北京:高等教育出版社,2005 Yang Guitong.Mechanics of elasticity[M].Beijing:Higher Education Press,2005(in Chinese) [14] Palumbo R,Russo M,Filippone E,et al.ACHAB:analysis code for high-altitude balloons .AIAA-2007-6642,2007
点击查看大图
计量
- 文章访问数: 4541
- HTML全文浏览量: 85
- PDF下载量: 1664
- 被引次数: 0