留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向同性湍流能量级串中的旋涡分岔机制

冉政

冉政. 各向同性湍流能量级串中的旋涡分岔机制[J]. 北京航空航天大学学报, 2012, (7): 891-894,952.
引用本文: 冉政. 各向同性湍流能量级串中的旋涡分岔机制[J]. 北京航空航天大学学报, 2012, (7): 891-894,952.
Ran Zheng. Nature of vortex bifurcation and cascade in isotropic turbulence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (7): 891-894,952. (in Chinese)
Citation: Ran Zheng. Nature of vortex bifurcation and cascade in isotropic turbulence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (7): 891-894,952. (in Chinese)

各向同性湍流能量级串中的旋涡分岔机制

基金项目: 国家自然科学基金资助项目(11172162,90816013)
详细信息
  • 中图分类号: V0357.5

Nature of vortex bifurcation and cascade in isotropic turbulence

  • 摘要: 充分发展各向同性湍流能量级串和多尺度相互作用一直是湍流理论研究的核心问题.目前,对于该物理过程的完全理解或精确的数学描述缺乏基于第一原理的理论.简要介绍了湍流能量级串的概念、起源、发展历程及面临的挑战问题,着重阐述了目前各种现有描述方法的局限性.基于三维不可压缩流体的Karman-Howarth方程,根据新得到的各向同性湍流尺度演化方程以及在这一方向上的理论进展,证明存在以湍流Taylor微尺度为动力学量的非线性动力系统.根据上述新的理论,可以认为:湍流能量级串由一系列的旋涡非线性分岔过程刻画,呈现Feigenbaum倍周期分岔的途径.

     

  • [1] Monin A S,Yaglom A M.Statistical fluid mechanics vol2:mechanics of turbulence[M].Massachusetts:MIT Press,1975
    [2] Frisch U.Turbulence:the legacy of A N Kolmogorv[M].Cambridge:Cambridge University Press,1995
    [3] Richardson L F.Weather predicition by numerical process[M].Cambridge:Cambridge University Press,1922
    [4] Kolmogorov A N.The local structure of turbulence in incompressible visocus fluid for very large Reynolds numbers[J].Doklady Akademiia Nauk SSSR,1941,30:9-13
    [5] Kolmogorov A N.A refinement of previous hypotheses concerning the local strucutrue of turbulence in viscous incompressible fluid at high Reynolds number[J].J Fluid Mech,1962(13):82-85
    [6] Batchelor G K,Townsend A A.The nature of turbulent motion at large wave numbers[J].Proc R Soc Lond A 1949,199(1057):238-255
    [7] Obukhov A M.Some specific features of atmospheric turbulence[J].J Fluid Mech,1962(13):77-81
    [8] Novikov A A.Intermittency and scale similarity in the strcture of a turbulent flow[J].Prikl Mat Mech,1971(35):266-277
    [9] Mandelbrot B B.Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence[J].Statistical Models and Turbulance,1972,12:333-351
    [10] Novikov A A,Stewart R W.Intermittency of turbulence and the spectrum of fluctuations of energy dissipation[J].Izv Akad Nauk SSSR Geofiz,1964,3,408-413
    [11] Mandelbrot B B.Intermittent turbulence in self-similar cascades:divergence of high moments and dimension of the carrier[J].J Fluid Mech,1974,62:331-358
    [12] Kraichnan R H.On Kolmogorov’s inertial-range theories[J].J Fluid Mech,1974,62:305-330
    [13] Frisch U,Sulem P L,Nelkin M A simple dynamical model of intermittent fully developed turbulence[J].J Fluid Mech,1978,87:719-736
    [14] Lorenz E N.Deterministic nonperiodic flow[J].J Atmos Sci,1972,20:130-148
    [15] 钱俭.混沌、湍流和非平衡统计力学[J].中国科学基金,1989(2):30-33
    Qian Jian.Chaos,turbulence and nonequilibrium statitistical mechanics[J].Chinese Natrual Science Foundations,1989(2):30-33(in Chinese)
    [16] Burgers J M.A mathematical model illustrating the theory of turbulence[J].Adv Appl Mech,1948,1:171-199
    [17] Desnyansky V N,Novikov E A.The evolution of turbulence spectra to the similarity regime[J].Izv Akad Nauk SSSR Fiz Atmos,1974,10:127-136
    [18] Kerr R M,Siggia E D.Cascade model of fully developed turbulence[J].J Stat Phys,1978,19:543-552
    [19] Gloaguen C,Leorat J,Pouquet A,et al.A scalar model for MHD turbulence[J].Physca D,1985,51:154-182
    [20] Qian J.Cascade model of turbulence[J].Phys Fluids,1988,31:2865-2874
    [21] Ran Z.New Sedov-type solution of isotropic turbulence[J].Chin Phys Lett,2008,25(12):4318-4320
    [22] Ran Z.One exactly soluble model in isotropic turbulence[J].Advances and Applications in Fluid Mechanics,2009,5(1),41-67
    [23] Ran Z.Remarks on Sedov-type solution of isotropic turbulence[EB/OL].New York:Cornell University Library,2009[2011-06-25].http://arxiv.org/abs/0904.2036
    [24] Ran Z.Multiscales and cascading in isotropic turbulence[J].Chinese Sci Bull,2011,56:2889-2892
  • 加载中
计量
  • 文章访问数:  2428
  • HTML全文浏览量:  166
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-25
  • 网络出版日期:  2012-07-30

目录

    /

    返回文章
    返回
    常见问答