留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的多目标粒子群优化算法

刘宝宁 章卫国 李广文 聂瑞

刘宝宁, 章卫国, 李广文, 等 . 一种改进的多目标粒子群优化算法[J]. 北京航空航天大学学报, 2013, 39(4): 458-462,473.
引用本文: 刘宝宁, 章卫国, 李广文, 等 . 一种改进的多目标粒子群优化算法[J]. 北京航空航天大学学报, 2013, 39(4): 458-462,473.
Liu Baoning, Zhang Weiguo, Li Guangwen, et al. Improved multi-objective particle swarm optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 458-462,473. (in Chinese)
Citation: Liu Baoning, Zhang Weiguo, Li Guangwen, et al. Improved multi-objective particle swarm optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 458-462,473. (in Chinese)

一种改进的多目标粒子群优化算法

详细信息
  • 中图分类号: TP 18; TP 273

Improved multi-objective particle swarm optimization algorithm

  • 摘要: 为了增强多目标粒子群优化算法的收敛性与多样性,提出一种改进的多目标粒子群算法.采用Kent映射对种群进行初始化,并将目标空间均匀划分为若干扇形区域;基于一种新的多样性和收敛性判定标准,选取合适的收敛性最优解和多样性最优解,并提出一种改进的粒子群更新公式进行全局搜索;采用聚类算法对外部种群与坐标轴夹角进行分析,维护外部种群.通过标准测试函数的仿真实验,与多目标优化算法基本MOPSO(Multi-objective Particle Swarm Optimization Algorithm)和NSGA-II(Nondominated Sorting Genetic Algorithm II)进行对比,结果表明了该改进算法的有效性.

     

  • [1] Kennedy J,Eberhant R C.Particle swarm optimization[C]// Proc of the IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948
    [2] Mostaghim S,T eich J.The role of ε-dominance in multi-objective particle swarm optimization method[C]// Proc of the 2003 Congress on Evolutionary Computation.Canberra:IEEE,2003:1764-1771
    [3] Coello C A,Lechuga M S.MOPSO:a proposal for multiple objective particle swarm optimization[C]// Proceedings of the Congress on Evolutionary Computation.Piscataway:IEEE,Service Center,2002:1051-1056
    [4] Leong W F,Yen G G.Dynamic swarms in PSO-based multiobjective optimization[C]// IEEE Congress on Evolutionary Computation.Singapore:IEEE,2007:3172-3179
    [5] Leong W F,Yen G G.Dynamic population size in PSO-based multiobjective optimization[C]// IEEE Congress on Evolutionary Computation.Vancouver:IEEE,2006:1718-1725
    [6] Balling R.The maximin fitness function multi-objective city and regional planning[C]//Proc of the 2nd Int Conf on Evolutionary Multi-criterion Optimization.Faro:Springer,2003:1-15
    [7] 徐明,沈希,马龙华,等.一种多目标粒子群改进算法的研究[J].控制与决策,2009,24(11):1713-1718
    Xu Ming,Shen Xi,Ma Longhua,et al.Research on modified multi-objective particle swarm optimization[J].Control and Decision,2009,24(11):1713-1718(in Chinese)
    [8] 雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009:106-107
    Lei Deming,Yan Xinping.Multi-objective intelligent optimization algorithm and its application[M].Beijing:Science Press,2009:106-107(in Chinese)
    [9] 陈增强,周茜,袁著祉.基于Kent映射的数字喷泉编解码方法研究[J].系统科学与数学,2011,31(6):731-741
    Chen Zengqiang,Zhou Qian,Yuan Zhuzhi.Research on the digital fountain codes and decodes algorithm based upon kent mapping[J].Journal of System Science and Mathematical Science,2011,31(6):731-741(in Chinese)
    [10] 刘丽琴,张学良,谢黎明,等.基于动态聚集距离的多目标粒子群优化算法及应用[J].农业机械学报,2010,41(3):189-194
    Liu Liqin,Zhang Xueliang,Xie Liming,et al.Multi-objective particle swarm optimization algorithm based on dynamic crowding distance and its application[J].Transaction of the Chinese Society for Agricultural Machinery,2010,41(3):189-194(in Chinese)
    [11] Zitzler E,Deb K,Thiele L.Comparison of multi-objective evolutionary algorithms:Empirical results[C]// Proc of the 2005 Congress on Evolutionary Multi-criterion Optimization.Berlin:Springer-Verlag,2005:165-175
    [12] 吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2006:262-273
    Wu Sentang,Fei Yuhua.Flight control system[M].Beijing:Beihang University Press,2006:262-275(in Chinese)
  • 加载中
计量
  • 文章访问数:  1719
  • HTML全文浏览量:  96
  • PDF下载量:  1301
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-26
  • 网络出版日期:  2013-04-30

目录

    /

    返回文章
    返回
    常见问答