留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Monotonicity-Preserving激波捕捉格式在湍流大尺度模拟中的评估

崔健 方剑 苑敬周 陆利蓬

崔健, 方剑, 苑敬周, 等 . Monotonicity-Preserving激波捕捉格式在湍流大尺度模拟中的评估[J]. 北京航空航天大学学报, 2013, 39(4): 488-493.
引用本文: 崔健, 方剑, 苑敬周, 等 . Monotonicity-Preserving激波捕捉格式在湍流大尺度模拟中的评估[J]. 北京航空航天大学学报, 2013, 39(4): 488-493.
Cui Jian, Fang Jian, Yuan Jingzhou, et al. Assessment of monotonicity-preserving scheme for large-scale simulation of turbulence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 488-493. (in Chinese)
Citation: Cui Jian, Fang Jian, Yuan Jingzhou, et al. Assessment of monotonicity-preserving scheme for large-scale simulation of turbulence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 488-493. (in Chinese)

Monotonicity-Preserving激波捕捉格式在湍流大尺度模拟中的评估

基金项目: 国家自然科学基金资助项目(51136003,51006006,50976010); 国家重点基础研究发展计划资助项目(2012CB720205); 航空科学基金资助项目(2012ZB51014); 航天创新基金资助项目
详细信息
  • 中图分类号: O 29

Assessment of monotonicity-preserving scheme for large-scale simulation of turbulence

  • 摘要: 对高阶激波捕捉格式的性能进行了系统的测评,重点分析了Suresh和Huynh(1997)所提出的Monotonicity-Preserving格式的性能.结果表明Monotonicity-Preserving格式的性能显著优于原始WENO(Weighted Essentially Non-Oscillatory) 格式,和改进型WENO格式相当.对格式的分析进一步表明,迎风型的激波捕捉格式在湍流模拟方面的性能都不及高阶中心格式,其原因归结为激波捕捉格式所包含的线性和非线性耗散.因此,改进高阶激波捕捉格式的关键在于同时降低格式的线性耗散和非线性耗散,以提高格式对湍流脉动能量的保持和对小尺度脉动结构的捕捉能力.

     

  • [1] Lele S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103:16-43
    [2] Roe P L.Approximate Riemann solvers,parameter vectors and difference schemes[J].Journal of Computational Physics,1981,43:357-372
    [3] Liou M S,Stenffen C J.A new flux splitting scheme[J].Journal of Computational Physics,1993,107:23-29
    [4] Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].Journal of Computational Physics,1988,77:439-471
    [5] Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126:202-228
    [6] Garnier E,Mossi M,Sagaut P,et al.On the use of shock-capturing schemes for large-eddy simulation[J].Journal of Computational Physics,1999,153:273-311
    [7] Johnsen E,Larsson J,Bhagatwala A V,et al.Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Computational Physics,2010,229:1213-1237
    [8] Martin M P,Taylor E M,Wu M,et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics,2006,220:270-289
    [9] Borges R,Carmona M,Costa B,et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics,2008,227:3191-3211
    [10] Shen Y,Zha G C.Improvement of weighted essentially non-oscillatory schemes near discontinuities .AIAA-2009-3655,2009
    [11] Taylor E M,Wu M,Martin M P.Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence[J].Journal of Computational Physics,2007,223:384-397
    [12] Grube N E,Taylor E M,Martin M P.Direct numerical simulation of shock-wave/isotropic turbulence interaction .AIAA-2009-4165,2009
    [13] Priebe S,Wu M,Martin M P.Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction[J].AIAA Journal,2009,47(5):1173-1185
    [14] Wu M,Martin M P.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J].AIAA Journal,2007,45(4):879-889
    [15] Suresh A,Huynh H T.Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J].Journal of Computational Physics,1997,136:83-99
    [16] Li Z,Jaberi F A.A high-order finite difference method for numerical simulations of supersonic turbulent flows[J].International Journal for Numerical Methods in Fluids,2012,68(6):740-766
    [17] Jammalamadaka A,Li Z,Jaberi F A.Large-eddy simulation of turbulent boundary layer interaction with an oblique shock wave .AIAA-2010-110,2010
    [18] Steger J L,Warming R.Flux vector splitting of the inviscid gas dynamic euqaions with application to finite difference methods[J].Journal of Computational Physics,1981,40:263-293
    [19] Gottlied S,Shu C W.Total variation diminishing Runge-Kutta schemes[J].Mathematics of Computation,1998,67(21):73-85
    [20] Shen Y,Zha G C,Wang B.Improvement of stability and accuracy for weighted essentially nonoscillatory scheme[J].AIAA Journal,2009,47(2):331-344
    [21] Rogallo R S.Numerical experiments in homogeneous turbulence .NSA Technical Memorandum 81315,1981
  • 加载中
计量
  • 文章访问数:  1649
  • HTML全文浏览量:  176
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-12
  • 网络出版日期:  2013-04-30

目录

    /

    返回文章
    返回
    常见问答