Simulation model validation based on OMLHD method
-
摘要: 当仿真因子数目较多,而真实系统观测数据相对稀少时,仿真模型的验证工作难以进行.针对仿真因子空间庞大,对应于每一组仿真因子配置,有且仅有对真实系统在相应工作条件下的一次观测这一极端情形,提出一种基于最优拉丁超立方设计(OMLHD, Orthogonal-Maximin Latin Hypercube Designs)的仿真模型验证方法.利用仿真验证试验的优化设计技术对仿真因子配置进行筛选,合理的选择、安排验证试验;采用p值分析方法解决验证试验中的数据一致性分析问题;基于逆概率分布定理的思想,对各组验证试验一致性分析结果进行综合分析.以某导弹制导仿真模型验证为例,对方法的性能进行了讨论.结果表明该方法能够实现在整个因子空间上对仿真模型的可信性进行验证的目的.Abstract: When simulation factors are numerous while real-world observed data are sparse, the issue of validating the simulation models is problematic. An extreme case was focused that limited real-world observations were available cross the factor space, and only a single replicate was obtained on per simulation factor setting. A method based on orthogonal-maximin Latin hypercube designs (OMLHD) was proposed by which the validation experiments could be well arranged across the factor space through optimal design. The p-value test and the inverse cumulative distribution function(CDF) theorem were introduced to evaluate the statistical consistency of the simulation/observation data, and combine the analysis results to make an overall validation study on the entire factor space. An example of validation of a guided missile simulation was taken, which demonstrates that the method is useful.
-
Key words:
- modeling and simulation /
- simulation model validation /
- design of experiments /
- p-values
-
[1] Kleijnen J P C.Verification and validation of simulation models[J].European Journal of Operational Research,1995,82(6):145-162 [2] 唐雪梅,王仁春.小样本情况下仿真模型的验证方法[J].系统仿真学报,2002,14(10):1263-1265 Tang Xuemei,Wang Renchun.Verification methods of simulation models in small sample situations[J].Journal of System Simulation,2002,14(10):1263-1265(in Chinese) [3] Seila A F.Output analysis for simulation [C]//Nelson B L,Kelton W D,Clark G M.Proceedings of the 23th Winter Simulation Conference.Arizona:ACM Press,1991:28-36 [4] Tang B.Selecting Latin hypercubes using correlation criteria [J].Statistica Sinica,1998(8):965-978 [5] Jin R,Chen W,Sudjianto A.An efficient algorithm for constructing optimal design of computer experiments[J].Journal of Statistical Planning and Inference,2005,134(9):268-287 [6] Sacks J,Welch W J,Mitchell T J,et al.Design and analysis of computer experiments[J].Statistical Science,1989,4(4):409-423 [7] 郭涛涛,王根,苏宗锋,等.基于制导火箭的脱靶量精度分析[J].弹箭与制导学报,2010,30(3):111-113 Guo Taotao,Wang Gen,Su Zongfeng,et al.Accuracy assessment of miss distance based on a guidance rocket[J].Journal of Projectiles,Rockets Missiles and Guidance,2010,30(3):111-113(in Chinese) [8] Fisher R A.Statistical methods for research workers[M].Edingburgh:Oliver and Boyd,1932 [9] Alberto L G.Probability and random processes for electrical engineering [M].2nd Edition.Addison Wesley Longman,1994 [10] Massey F J.The Kolmogorov-Smirnov test for goodness of fit[J].Journal of the American Statistical Association,1951,46(253):68-78 [11] 焦鹏.导弹制导仿真系统VV&A理论和方法研究.长沙:国防科学技术大学机电工程与自动化学院,2010 Jiao Peng.Research on the VV&A theory and methods of missile guidance simulation system [D].Changsha:School of Mechatronics and Automation,National University of Defense Technology,2010(in Chinese)
点击查看大图
计量
- 文章访问数: 1511
- HTML全文浏览量: 159
- PDF下载量: 570
- 被引次数: 0