留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超磁致伸缩作动器的率相关建模与跟踪控制

郭咏新 毛剑琴

郭咏新, 毛剑琴. 超磁致伸缩作动器的率相关建模与跟踪控制[J]. 北京航空航天大学学报, 2013, 39(10): 1360-1365.
引用本文: 郭咏新, 毛剑琴. 超磁致伸缩作动器的率相关建模与跟踪控制[J]. 北京航空航天大学学报, 2013, 39(10): 1360-1365.
Guo Yongxin, Mao Jianqin. Rate-dependent modeling and tracking control of giant magnetostrictive actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1360-1365. (in Chinese)
Citation: Guo Yongxin, Mao Jianqin. Rate-dependent modeling and tracking control of giant magnetostrictive actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1360-1365. (in Chinese)

超磁致伸缩作动器的率相关建模与跟踪控制

基金项目: 国家自然科学基金重点项目(91016006, 91116002); 中央高校基本科研业务费专项资金资助项目
详细信息
    作者简介:

    郭咏新(1979-),男,河北唐山人,博士生,guoyongxin1979@126.com.

  • 中图分类号: TP29

Rate-dependent modeling and tracking control of giant magnetostrictive actuators

  • 摘要: 利用Hammerstein模型对超磁致伸缩作动器(GMA, Giant Magnetostrictive Actuators)进行建模, 分别以改进的Prandtl-Ishlinskii(MPI, Modified Prandtl-Ishlinskii)模型和外因输入自回归模型(ARX, Autoregressive model with exogenous input)代表Hammerstein模型中的静态非线性部分和线性动态部分,并给出了模型的辨识方法.此模型能在1~100 Hz频率范围内较好地描述GMA的率相关迟滞非线性特性.提出了前馈逆补偿和比例-微分-积分(PID, Proportional-Integral-Derivative)反馈相结合的复合控制策略.实时跟踪幅值为16 μm的单一频率和复合频率正弦参考输入信号, 均方根误差小于1 μm, 相对误差小于10%, 证明了控制策略的有效性.

     

  • [1] Jiles D C,Atherton D L.Theory of ferromagnetic hysteresis [J].Journal of Magnetism and Materials,1986,61:48-60 [2] Brokate M,Sprekels J.Hysteresis and phase transitions [M].Berlin:Springer Verlag,1996 [3] Mayergoyz I D.Dynamic preisach model of hysteresis [J].IEEE Trans Magn,1988,24(6):2925-2927 [4] Webb G V,Lagoudas D C,Kurdila A J.Hysteresis modeling of SMA actuators for control application [J].Journal of Intelligent Material Systems and Structures,1998,9(6):432-448 [5] Kuhnen Klaus.Modeling,identification and compensation of complex hysteresis nonlinearities,a modified Prandtl-Ishlinskii approach [J].European Journal of Control,2003,9(4):407-418 [6] Venkataraman R.Modeling and adaptive control of magnetostrictive actuator[D].College Park:Center for Dynamics and Control of Smart Structures,University of Maryland,1999 [7] Slaughter J C,Dapino M J,Smith R C,et al.Modeling of a Terfenol-D ultrasonic transducer[C]//Proceedings of Smart Structures and Materials 2000:Smart Structures and Integrated Systems.Newport Beach,USA:SPIE,2000:366-377 [8] Tan X B,Baras J S.Modeling and control of hysteresis in magnetostrictive actuators [J].Automatica,2004,40:1469-1480 [9] Janaideh M Al,Su C Y,Rakheja S.Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators [J].Smart Mater Struct,2008,17(3):035026.1-035026.11 [10] Dong R,Tan Y,Chen H,et al.A neural network based model for rate-dependent hysteresis for piezoceramic actuators [J].Sensor Actuat A—Phys,2008,143(3):370-376 [11] Deng L,Tan Y.Diagonal recurrent neural network with modified backlash operators for modeling of rate-dependent hysteresis in piezoelectric actuators [J].Sensor Actuat A—Phys,2008, 148(1): 259-270 [12] Lei W,Mao J Q,Ma Y H.A new modeling method for nonlinear rate-dependent hysteresis system based on LS-SVM[C]// Proceedings of IEEE International Conference on Control,Automation,Robotics and Vision.Hanoi,Vietnam:IEEE,2008:1442-1446 [13] Mao J Q,Ding H S.Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis [J].Science in China Press,2009,52(4):547-722 [14] Iyer R V,Tan X B,Krishnaprasad P S.Approximate inversion of the preisach hysteresis operator with application to control of smart actuators [J].IEEE Transactions on Automatic Control,2005,50(6):798-810 [15] Cavallo A,Natale C,Pirozzi S,et al.Effects of hysteresis compensation in feedback control systems [J].IEEE Transactions on Magnetics,2003,39(3):1389-1392 [16] Tao G,Kokotovic P V.Adaptive control of systems with actuator and sensor nonlinearities [M].New York,USA:John Wiley & Sons,1996 [17] Webb G V,Kurdila A J.Identification and adaptive control for a class of hysteresis operators .AIAA 97-1208,1997 [18] Zhang Z,Chen Q W,Mao J Q.A generalized stress-dependent Prandtl-Ishlinskii model and its adaptive inverse compensation with model reference for GMA[C]//Proceedings of 8th Asian Control Conference.Kaohsiung,Taiwan:IEEE,2011:535-540 [19] Liaw H C,Shirinzadeh B,Smith J.Enhanced sliding mode motion tracking control of piezoelectric actuator [J].Sensors and Actuators A,2007,138:194-202 [20] Nealis J M,Smith R C.Model-based robust control design for magnetostrictive transducers operating in hysteretic and nonlinear regimes [J].IEEE Transactions on Control Systems Technology,2007,15(1):22-39 [21] Tan X B,Baras J S.A robust control framework for smart actuators[C]//Proceedings of the American Control Conference.Denver,Colorado,USA:IEEE,2003:4645-4650 [22] Giri F,Bai E W.Block-oriented nonlinear systems identification [M].Berlin:Springer-Verlag,2010:4-6 [23] Zhu Y C.Multivariable system identification for process control [M].Netherlands:Elsevier Science Ltd,2001:73-82
  • 加载中
计量
  • 文章访问数:  1385
  • HTML全文浏览量:  182
  • PDF下载量:  645
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-13
  • 网络出版日期:  2013-10-30

目录

    /

    返回文章
    返回
    常见问答