Design of high overpressure cockpit based on composite material
-
摘要: 面对我国军机座舱余压偏低现象,设计高余压座舱实现高工效、舒适座舱环境.为解决座舱质量和环境工效之间的矛盾,选用复合材料代替目前铝合金材料,应用First-Order Radio优化算法实现优化.目前座舱余压40 kPa,为提高工效,余压提高到55 kPa,余压值增加37.5%,座舱质量反减轻26.1%,使得矛盾得到协调.基于描述材料特性的本构关系,建立分析材料性能参数对结构影响的有限元模型,并将灵敏度分析Morris算法引入模型参数分析中,结果表明,影响结构的主要参数是蒙皮及环向加强筋的弹性模量和泊松比.基于分析结果对材料设计提出了一些建议.所得结论可为高余压座舱设计提供参考.Abstract: In the face of the phenomenon of low overpressure of military airplane cockpits in our country, the design thought of high overpressure cockpits was proposed to realize high work efficiency and comfortable cockpit environment. To solve the contradiction between cockpit weight and environmental efficiency, a solution of using composite material to replace aluminium alloy was put forward and then the cockpit optimization was performed by means of the First-Order Radio optimization algorithm. The overpressure value increased by 37.5% from 44 kPa to 55 kPa, and the cockpit weight decreased by 26.1%. Based on the constitutive relation describing material properties, finite element models analyzing the effect of material property parameters on structures were established, also, sensitivity analysis algorithm of Morris was introduced to model parameters analysis. The results show that the major parameters that affect structures are elasticity modulus and Poisson ratio of skin and circumferential reinforcing ribs. And then some suggestions about material design were proposed based on analysis results and the conclusion can provide reference for the design of high overpressure cockpit.
-
[1] 肖华军.航空供氧防护装备生理学[M].北京:军事医学科学出版社, 2008:107-110 Xiao Huajun. Aviation oxygen protection equipment physiology[M].Beijing:Military Medicine Science Press, 2008:107-110 (in Chinese) [2] Murugan S, Flores E S. Optimal design of variable fiber spacing composites for aircraft skins[J].Composite Structures, 2012, 94(4) :626-633 [3] 张彦考.全复合材料舱段组合结构优化设计[J].西北工业大学学报, 2008, 51(11):1048-1050 Zhang Yankao.Composite structural optimization design of all composite material cabin[J].Journal of Northwestern Polytechnical University, 2008, 51(11):1048-1050(in Chinese) [4] Simmons M C, Schleyer G K.Pressure loading of aircraft structural panels[J].Thin-Walled Structures, 2009, 47(4):496-506 [5] Lewis S J.The use of carbon fibre composites on military aircraft[J].Composites Manufacturing, 2006, 17(1):95-103 [6] Kotzakolios T, Vlachos D E, Kostopoulos V.Response of metal composite laminate fuselage structures using finite element modelling[J].Composite Structures, 2011, 93(5):665-681 [7] 刘丰睿, 赵丽滨, 刘海涛.复合材料舱段三维应力分析及设计[J].材料工程, 2008, 52(5):449-450 Liu Fengrui, Zhao Libin, Liu Haitao.Analysis and design of composite material cabin three-dimension stress[J].Materials Engineering, 2008, 52(5):449-450(in Chinese) [8] 冯军.复合材料技术在当代飞机结构上的应用[J].航空制造技术, 2009, 17(2):101-102 Feng Jun.The application of composite material technology in modern aircraft structure[J].Aviation Manufacturing Technology, 2009, 17(2):101-102(in Chinese) [9] Ardema M D, Chambers M C, Patron A P.The weight estimation and analysis of fuselage and wing of transport aircraft[J].Technical Memorandum, 2009, 32(5):445-450 [10] Heimbs S, Vogt D, Hartnack R.Numerical simulation of aircraft interior components under loads[J].Int J Crash Worthiness, 2008, 23(5):511-521 [11] Langdon G S, Nurick G N, Cantwell W J.The response of fibre metal laminates panels subjected to uniformly distributed loading[J].Eur J Mech A/Solids, 2009, 32(2):107-115
点击查看大图
计量
- 文章访问数: 1565
- HTML全文浏览量: 195
- PDF下载量: 433
- 被引次数: 0