Numerical simulation of external MHD generator on board reentry vehicles
-
摘要: 提出了钝锥型再入飞行器上的表面磁流体发电装置方案,采用低磁雷诺数近似下的磁流体力学模型对其进行了流动与静电场耦合的数值模拟,由此建立了表面磁流体发电装置中的物理图像.数值模拟结果表明,在典型再入条件(飞行高度46km,速度7km/s)下,所提出表面磁流体发电装置方案能够实现兆瓦级(电功率1.28MW)能量输出,电能提取导致再入飞行器阻力增大13.7%,对飞行器壁面总热流值的影响并不显著,但发电区域及其下游壁面的热流密度分布发生明显变化,该区域内热流密度峰值发生于电极的前、后缘.Abstract: A scenario of external magnetohydrodynamic (MHD) generator on board blunt-cone based reentry vehicles was proposed, and numerical parametric studies by employing an MHD model based on the low magnetic Reynolds number approximation were performed. Following the numerical results, the physical features of the external MHD generator were drawn. One may conclude that the power output of the external MHD generator is capable of providing energy output up to 1.28 MW under the typical reentry condition (flight height 46km,velocity 7km/s). Under the MHD power extracting operation, the drag coefficient of the reentry vehicle is raised by 13.7%, whereas the total wall heat flux varies mildly. However, the distribution of heat flux density in the MHD power extraction zone and downstream differs distinctly from that in the original N-S flow. The peak heat flux densities in the area occur at the tips of the electrodes.
-
[1] Knight D,Kuchinskiy V,Kuranov V,et al.Survey of aerodynamic flow control at high speed by energy deposition .AIAA-2003-0525,2003 [2] Knight D.A selected survey of magnetogasdynamic local flow control at high speeds .AIAA-2004-1191,2004 [3] Miles R B,Macheret S O,Shneider M N,et al.Plasma-enhanced hypersonic performance enabled by MHD power extraction .AIAA-2005-561,2005 [4] Bityurin V A,Bocharov A N,Baranov D S,et al.Study of MHD flow control and on-board electrical power generation .AIAA-2006-1008,2006 [5] Bityurin V A,Bocharov A N.MHD flow control in hypersonic flight .AIAA-2005-3225,2005 [6] Girgis I G,Shneider M N,Macheret S O,et al.Steering moments creation in supersonic flow by off-axis plasma heat addition[J].J Spacecraft and Rockets,2006,43(3): 607-613 [7] Bisek N J,Boyd I D,Poggie J.Numerical study of energy deposition requirements for aerodynamic control of hypersonic vehicles .AIAA-2008-1109,2008 [8] Garrison G W.The electrical conductivity of a seeded nitrogen plasma[J].AIAA Journal,1968,6(7):1264-1270 [9] Lu F K,Liu H C,Wilson D R.Electrical conductivity channel for a shock tube[J].Measurement Science Technology,2005,16(9):1730-1740 [10] Bityurin V A,Zeigarnik V A,Kuranov A L.On a perspective of MHD technology in aerospace applications .AIAA-96-2355,1996 [11] Macheret S O,Shneider M N,Candler G V.Modeling of MHD power generation on board reentry vehicles .AIAA-2004-1024,2004 [12] Steeves C A,Wadley H N G,Miles R B,et al.A magneto-hydrodynamic power panel for space re-entry vehicles[J].J Appl Mech,2007,74(26): 57-64 [13] Steeves C A,Shneider M N,Macheret S O,et al.Electrode design for magnetohydrodynamic power panels on reentering space vehicles .AIAA-2005-1340,2005 [14] Wan T,Suzuki R,Candler G V.Three dimensional simulation of electric field and MHD power generation during re-entry .AIAA-2005-5045,2005 [15] Chen Gang,Lee Chun-Hian,Zhang Jinbai,et al.Modeling and parametric studies of external MHD generators ,AIAA-2009-1233,2009 [16] Sutton G W,Sherman A.Engineering magnetohydrodynamics[M].New York: McGraw Hill,1965:295-308 [17] Gaitonde D V.A high-order implicit procedure for the 3-D electric field in complex magnetogasdynamic simulations[J].Comp Fluids,2004,33(3): 345-374 [18] Zheng Bo,Lee Chun-Hian.The effects of limiters on high resolution computations of hyper
点击查看大图
计量
- 文章访问数: 3466
- HTML全文浏览量: 243
- PDF下载量: 1343
- 被引次数: 0