留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两类激波捕捉格式的性能分析

于 剑 阎 超

于 剑, 阎 超. 两类激波捕捉格式的性能分析[J]. 北京航空航天大学学报, 2010, 36(1): 10-13.
引用本文: 于 剑, 阎 超. 两类激波捕捉格式的性能分析[J]. 北京航空航天大学学报, 2010, 36(1): 10-13.
Yu Jian, Yan Chao. On the performance of two shock-capturing schemes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 10-13. (in Chinese)
Citation: Yu Jian, Yan Chao. On the performance of two shock-capturing schemes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 10-13. (in Chinese)

两类激波捕捉格式的性能分析

基金项目: 国家973计划资助项目(2009CB724104)
详细信息
    作者简介:

    于 剑(1984-),男,山东济宁人,博士生,yujian@ase.buaa.edu.cn.

  • 中图分类号: V 211.3

On the performance of two shock-capturing schemes

  • 摘要: 考虑了两类典型的激波捕捉格式:特征形式的MUSCL(Monotone Upstream-centred Schemes for Conservation Laws)格式和WENO (Weighted Essentially Non-Oscillatory)格式.MUSCL格式在作特征变换时使用了局部线性化的思想,并且针对波系的性质施加相应的限制器;通过逐维重构实现有限体积法的WENO格式.针对一维、二维和三维Euler系统进行数值实验.在一维和二维的情况下,特征形式的MUSCL格式在接触间断的捕捉上具有较明显的优势,而对于激波的捕捉则差别不大.对于三维问题则是WENO格式对流场的分辨更精细.最后对上述结果给出解释,并且提出了可能的改进方法.

     

  • [1] Van Leer B.Towards the ultimate conservation difference scheme V:a second-order sequal to Godunov’s method[J].Journal of Computational Physics,1979,32(1):101-136 [2] Harten A,Engquist B,Osher S,et al.Uniformly high-order accurate essentially non-oscillatory schemes[J].Journal of Computational Physics,1987,71(2):231-303 [3] Liu X D,Osher S,Chan T.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics,1994,115(1):200-212 [4] Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1):202-228 [5] Shen Y Q,Zha G C.Improvement of the WENO schemes smoothness estimator .AIAA-2008-3993,2008 [6] Nichols R H,Tramel R W,Buning P G.Evaluation of two high-order weighted essentially nonoscillatory schemes[J].AIAA Journal,2008,46(12):3090-3102 [7] Ladeinde F,Alabi K,Safta C,et al .The first high-order CFD simulation of aircraft:challenges and opportunities .AIAA-2006-1526,2006 [8] Rider W J.Methods for extending high-resolution schemes to non-linear systems of hyperbolic conservation laws[J].International Journal for Numerical Methods in Fluids,1993,17(10):861-885 [9] Titarev V A,Toro E F.Finite-volume WENO schemes for three-dimensional conservation laws[J].Journal of Computational Physics,2004,201(1):238-260 [10] Woodward P,Colella P.The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1):115-173 [11] Langseth J O,Leveque R J.A wave propagation method for three-dimensional hyperbolic conservation laws[J].Journal of Computational Physics,2000,165(1):126-166
  • 加载中
计量
  • 文章访问数:  3424
  • HTML全文浏览量:  134
  • PDF下载量:  1839
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-30
  • 网络出版日期:  2010-01-31

目录

    /

    返回文章
    返回
    常见问答