Signature on conic curve over Zn based on two hard problems
-
摘要: 通过对一个剩余类环 Zn上圆锥曲线Cn(a,b) 数字签名方案(Xiao06方案)的安全性分析,发现该方案的公开参数选取和算法设计存在问题,导致利用韦达定理可以分解模数 n ,说明Xiao06方案的安全性不是基于整数分解难题的.针对此缺陷,采取保密部分参数和修改验证算法的方法,提出了一个改进的环 Zn 上圆锥曲线的数字签名方案,并且给出了改进方案的数值模拟.分析表明,改进的方案是一个同时基于离散对数和整数分解双难题的环 Zn 上圆锥曲线的数字签名方案,不仅保留了原Xiao06方案的优点(明文嵌入方便,求逆元速度快,元素阶的计算及曲线上点的运算容易),还具有很强的抗破解能力.Abstract: The security of the digital signature scheme (Xiao06 scheme) on conic curve Cn(a,b) over the residue class ring Zn was analyzed. The analysis result indicates that the published parameters can make the modulus n be factorized using the Weda-s theorem, and shows that the Xiao06 scheme is not a scheme whose security based on the integer factorization problem. To address this issue, an improved digital signature scheme on conic curve over Zn was proposed. Some parameters were kept secretly, and the verification algorithm was modified in the improved scheme. Furthermore, the numerical simulation of the improved scheme was given. The analysis shows that the improved scheme is a digital signature scheme based on two hard problems in computing discrete logarithm and factorizing integer simultaneously, and that the improved scheme has not only the merits (convenience for plaintext embedding, quickness for the inverse operation, and easiness for element order and points computing in curve) of the Xiao06 scheme, but also the advantage of strong anti-cracking ability.
-
Key words:
- digital signature /
- integer factorization /
- discrete logarithm /
- conic curve
-
[1] Diffie W, Hellman M E. New direction in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6):644-654 [2] McCurley K C.A key distribution system equivalent to factoring[J]. Cryptology, 1988, 1(2):95-106 [3] 吴秋新,杨义先,胡正名.同时基于离散对数和素因子分解的新的数字签名方案[J].北京邮电大学学报, 2001, 24(1): 61-65 Wu Qiuxin, Yang Yixian, Hu Zhengming. New signature schemes based on discrete logarithms and factoring[J]. Journal of Beijing University of Posts and Telecommunications,2001,24(1):61-65(in Chinese) [4] 董晓蕾,曹珍富,李晓红.基于双难题的两个数字签名方案的密码分析[J].上海交通大学学报, 2006, 40(7):1174-1177 Dong Xiaolei, Cao Zhenfu, Li Xiaohong. Cryptanalysis of two signature schemes based on two hard problems[J]. Journal of Shanghai Jiaotong University, 2006, 40(7):1174-1177(in Chinese) [5] 李子臣,徐国爱,杨义先.He-Wu数字签名方案的攻击方法[J].北京邮电大学学报, 1999, 22(4):6-8 Li Zichen, Xu Guoai, Yang Yixian. Cryptanalysis of improved Rabin-s crypto-system[J]. Journal of Beijing University of Posts and Telecommunications, 1999, 22(4): 6-8(in Chinese) [6] 张明志.用圆锥曲线分解整数[J].四川大学学报:自然科学版,1996,33(4):356-359 Zhang Mingzhi. Factoring integer with conics[J]. Journal of Sichuan University:Natural Science Edition,1996,33(4):356-359(in Chinese) [7] 曹珍富.基于有限域 FP 上圆锥曲线的公钥密码系统 刘木兰,龚奇敏.密码学进展—ChinaCrypt’98.北京:科学出版社,1998:45-49 Cao Zhenfu. A public key cryptosystem based on the conic curve over finite fields FP //Liu Mulan, Gong Qimin. Advances in Cryptology-ChinaCrypt’98. Beijing: Science Press, 1998:45-49 (in Chinese) [8] 孙琦,朱文余,王标.环 Zn 上圆锥曲线和公钥密码协议[J].四川大学学报:自然科学版,2005,42(3):471-478 Sun Qi, Zhu Wenyu, Wang Biao. The conic curves over Zn and public-key cryptosystem protocol[J]. Journal of Sichuan University:Natural Science Edition,2005,42(3):471-478(in Chinese) [9] 王标,朱文余,孙琦.基于剩余类环 Zn 圆锥曲线的公钥密码体制[J].四川大学学报:工程科学版, 2005,37(5):112-117 Wang Biao, Zhu Wenyu, Sun Qi. Public-key cryptosystem based on the conic curves over Zn [J]. Journal of Sichuan University:Engineering Science Edition,2005,37(5):112-117(in Chinese) [10] 肖龙,王标,孙琦.基于环 Zn 上的圆锥曲线数字签名和多重数字签名[J].西安交通大学学报,2006,40(6):648-651 Xiao Long, Wang Biao, Sun Qi. Digital signature and multiple digital signatures based on the conic curve over Zn [J]. Journal of Xi-an Jiaotong University, 2006, 40(6):648-651(in Chinese)
点击查看大图
计量
- 文章访问数: 3235
- HTML全文浏览量: 46
- PDF下载量: 1031
- 被引次数: 0