留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能监控场景中运动目标轨迹聚类算法

郝久月 李 超 高 磊 熊 璋

郝久月, 李 超, 高 磊, 等 . 智能监控场景中运动目标轨迹聚类算法[J]. 北京航空航天大学学报, 2009, 35(9): 1083-1086.
引用本文: 郝久月, 李 超, 高 磊, 等 . 智能监控场景中运动目标轨迹聚类算法[J]. 北京航空航天大学学报, 2009, 35(9): 1083-1086.
Hao Jiuyue, Li Chao, Gao Lei, et al. Moving object trajectory clustering method in intelligent surveillance video[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(9): 1083-1086. (in Chinese)
Citation: Hao Jiuyue, Li Chao, Gao Lei, et al. Moving object trajectory clustering method in intelligent surveillance video[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(9): 1083-1086. (in Chinese)

智能监控场景中运动目标轨迹聚类算法

详细信息
    作者简介:

    郝久月(1984-),女,河北唐山人,博士生,haojiuyue@gmail.com.

  • 中图分类号: TP 391.4

Moving object trajectory clustering method in intelligent surveillance video

  • 摘要: 轨迹分析是视频监控场景理解的基础,但由于遮挡等原因,跟踪过程会出现不完整的噪声轨迹,导致分析结果不准确.针对此类问题利用改进的轨迹相似度度量和聚类方法进行场景区域分割.首先,对轨迹进行编码,提出利用轨迹的空间特征和速度方向特征改进相似性度量方法计算轨迹间距离;其次,采用改进的层次聚类算法,以该类最长轨迹作为运动物体行为模式代表,将在空间上接近且具有相似速度特征的轨迹划分为同一场景区域,得到符合实际情况的聚类结果.本算法无需对轨迹进行复杂的预处理或过滤,并且加入速度方向特征使区域划分更加合理.最后,在真实场景下,验证了该聚类算法的有效性和普遍适用性.

     

  • [1] Howarth R J, Buxton H. Conceptual descriptions from monitoring and watching image sequences[J]. Image and Vision Computing,2000,18(2):105-135 [2] Khalid S,Nafterl A. Classifying spatiotemporal object trajectories using unsupervised learning of basis function coefficients Aggarwal J K. Lect Notes Comput Sci. NY:ACM,2005:45-51 [3] 胡卫明,谢丹,谭铁牛,等.轨迹分布模式学习的层次自组织神经网络方法[J].计算机学报,2003,26(4):417-426 Hu Weiming, Xie Dan, Tan Tieniu, et al. A hierarchical self-organizing approach for learning the patterns of motion trajectories[J].Chinese Journal of Computers,2003,26(4):417-426(in Chinese) [4] Wang X G, Tieu K, Grimson E. Learning semantic scene models by trajectory analysis Pinz A. Lect Notes Comput Sci. Berlin: Springer, 2006:110-123 [5] Junejo I N, Foroosh H. Trajectory rectification and path modeling for video surveillance Davies L. Proceedings of the IEEE International Conference on Computer Vision. Brazil: IEEE Press, 2007:1-7 [6] Piciarelli C, Micheloni C, Foresti G L. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and system for Video Technology, 2008,18(9):1544-1554 [7] Lee J G, Han J W, Whang K Y. Trajectory clustering: a partition and-group framework Proceedings of the ACM SIGMOD International Conference on Management of Data. NY: ACM, 2007:593-604 [8] Zhang Z, Huang K, Tan T N. Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes Tang Y Y. Proceedings-International Conference on Pattern Recognition.Piscataway,NJ:IEEE Press, 2006,3: 1135-1138 [9] 边肇祺,张学工.模式识别 [M].2版.北京:清华大学出版社,2000:244-247 Bian Zhaoqi, Zhang Xuegong. Pattern recognition [M]. 2nd ed.Beijing:Tsinghua University Press,2000:244-247(in Chinese) [10] jpMarquess de Sa.模式识别——原理、方法及应用[M].吴逸飞译.北京:清华大学出版社,2002:55-73 jpMarquess de Sa. Pattern recognition concepts,methods and applications[M].Translated by Wu Yifei.Beijing:Tsinghua University Press,2002:55-73(in Chinese) [11] Veeraraghavanm H, Papanikolopoulos N. Combining multiple tracking modalities for vehicle tracking at traffic intersections Tarn T J. Proceedings-IEEE International Conference on Robotics and Automation. Piscataway,NJ:IEEE,2004(3):2303-2308
  • 加载中
计量
  • 文章访问数:  3669
  • HTML全文浏览量:  55
  • PDF下载量:  2351
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-04
  • 网络出版日期:  2009-09-30

目录

    /

    返回文章
    返回
    常见问答