留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱信息散度的光谱解混算法

徐 州 赵慧洁

徐 州, 赵慧洁. 基于光谱信息散度的光谱解混算法[J]. 北京航空航天大学学报, 2009, 35(9): 1091-1094.
引用本文: 徐 州, 赵慧洁. 基于光谱信息散度的光谱解混算法[J]. 北京航空航天大学学报, 2009, 35(9): 1091-1094.
Xu Zhou, Zhao Huijie. Advanced spectral unmixing algorithm based on spectral information divergence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(9): 1091-1094. (in Chinese)
Citation: Xu Zhou, Zhao Huijie. Advanced spectral unmixing algorithm based on spectral information divergence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(9): 1091-1094. (in Chinese)

基于光谱信息散度的光谱解混算法

基金项目: 中国地质调查局资助项目(1212010816033);国家863计划资助项目(2008AA121102);长江学者和创新团队发展计划资助项目(IRT0705)
详细信息
    作者简介:

    徐 州(1984-),浙江台州人,硕士生,yurenzhou 2000@163.com.

  • 中图分类号: TP 751.1

Advanced spectral unmixing algorithm based on spectral information divergence

  • 摘要: 光谱解混是高光谱遥感定量化的关键,提出了一种基于光谱信息散度和光谱混合分析的光谱解混改进算法(SID-SMA,Spectral Information Divergence-Spectral Mixed Analysis).以光谱信息散度判定最优端元子集,端元选择时采用端元的初选和二次选择来提高端元选择的精度,得到较小的丰度估计误差.通过光谱库模拟数据的结果可以看出,SID-SMA的端元选择精度和丰度估计精度要优于其他算法,当信噪比为100∶ 1时,算法端元选择正确率达到了99.8%,29个端元的丰度估计总误差小于0.1,并且算法的速度较快.

     

  • [1] 赵慧洁,李娜,贾国瑞,等.改进独立成分分析在高光谱图像分类中的应用[J].北京航空航天大学学报,2006,32(11): 1333-1336 Zhao Huijie, Li Na, Jia Guorui, et al. Improved independent component analysis applied to classification hyperspectral imagery [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11): 1333-1336(in Chinese) [2] Rogge D M, Rivard B, Zhang J K, et al. Iterative spectral unmixing for optimizing per-pixel endmember sets [J]. IEEE Transaction Geoscience Remote Sensing, 2006, 44(12):3725-3736 [3] Boardman J W. Automating spectral unmixing of AVIRIS data using convex geometry concepts In Proceeding of Summary 4th Annual JPL Airborne Geoscience Workshop. :JPL Publication 93-26, 1993,1:11-14 [4] Bateson A,Curtiss B. A method for manual endmember selection and spectral unmixing [J].Remote Sensing Environment, 1996, 55(3):229-243 [5] Winter M E. Fast autonomous spectral endmember determination in hyperspectral data //In Proceeding of 13th International Conference of Application of Geologic Remote Sensing. Vancouver, BC, Canada: , 1999, Ⅱ: 337-344 [6] Nascimento J M P, Dias J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transaction Geoscience Remote Sensing, 2005, 43(4):898-910 [7] Chang C I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis [J].IEEE Transactions on Information Theory, 2000, 45(5):1927-1932 [8] Ramsey M S,Christensen P R. Mineral abundance determination:quantitative deconvolution of thermal emission spectra[J].Journal of Geophysics Research,1998,103(B1):577-596 [9] Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Transaction Geoscience Remote Sensing, 2001, 39(3):529-545 [10] Staenz K, Szeredi T, Schwarz J. ISDAS-A system for processing/analyzing hyperspectral data [J]. Technical note, Canadian Journal of Remote Sensing, 1998, 24(2):99-113 [11] Ruff S W, Christensen P R, Blaney D L, et al. The rocks of Gusev Crater as viewed by the Mini-TES instrument [J]. Journal of Geophysics Research, 2006, 111(E12), doi: 10.1029/2006JE002747
  • 加载中
计量
  • 文章访问数:  3737
  • HTML全文浏览量:  44
  • PDF下载量:  2317
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-21
  • 网络出版日期:  2009-09-30

目录

    /

    返回文章
    返回
    常见问答