Advanced spectral unmixing algorithm based on spectral information divergence
-
摘要: 光谱解混是高光谱遥感定量化的关键,提出了一种基于光谱信息散度和光谱混合分析的光谱解混改进算法(SID-SMA,Spectral Information Divergence-Spectral Mixed Analysis).以光谱信息散度判定最优端元子集,端元选择时采用端元的初选和二次选择来提高端元选择的精度,得到较小的丰度估计误差.通过光谱库模拟数据的结果可以看出,SID-SMA的端元选择精度和丰度估计精度要优于其他算法,当信噪比为100∶ 1时,算法端元选择正确率达到了99.8%,29个端元的丰度估计总误差小于0.1,并且算法的速度较快.Abstract: Spectral unmixing is a key issue of quantitative remote sensing. An advanced spectral unmixing algorithm based on per-pixel optimal endmembers selection named spectral information divergence-spectral mixed analysis (SID-SMA) was proposed. It determined the optimal endmembers subset using the criteria of SID and selected endmembers through two selection steps which could improve the precision of endmember selection and obtain small abundance estimation error. The results of simulated data from spectral library indicate that SID-SMA has better precision of endmember selection and abundance estimation. When the signal-to-noise ratio (SNR) is 100∶ 1, the correct proportion of endmember selection arrives at 99.86% and total abundance error of 29 endmembers is less than 0.1 and the speed of SID-SMA is much faster.
-
[1] 赵慧洁,李娜,贾国瑞,等.改进独立成分分析在高光谱图像分类中的应用[J].北京航空航天大学学报,2006,32(11): 1333-1336 Zhao Huijie, Li Na, Jia Guorui, et al. Improved independent component analysis applied to classification hyperspectral imagery [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11): 1333-1336(in Chinese) [2] Rogge D M, Rivard B, Zhang J K, et al. Iterative spectral unmixing for optimizing per-pixel endmember sets [J]. IEEE Transaction Geoscience Remote Sensing, 2006, 44(12):3725-3736 [3] Boardman J W. Automating spectral unmixing of AVIRIS data using convex geometry concepts In Proceeding of Summary 4th Annual JPL Airborne Geoscience Workshop. :JPL Publication 93-26, 1993,1:11-14 [4] Bateson A,Curtiss B. A method for manual endmember selection and spectral unmixing [J].Remote Sensing Environment, 1996, 55(3):229-243 [5] Winter M E. Fast autonomous spectral endmember determination in hyperspectral data //In Proceeding of 13th International Conference of Application of Geologic Remote Sensing. Vancouver, BC, Canada: , 1999, Ⅱ: 337-344 [6] Nascimento J M P, Dias J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transaction Geoscience Remote Sensing, 2005, 43(4):898-910 [7] Chang C I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis [J].IEEE Transactions on Information Theory, 2000, 45(5):1927-1932 [8] Ramsey M S,Christensen P R. Mineral abundance determination:quantitative deconvolution of thermal emission spectra[J].Journal of Geophysics Research,1998,103(B1):577-596 [9] Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Transaction Geoscience Remote Sensing, 2001, 39(3):529-545 [10] Staenz K, Szeredi T, Schwarz J. ISDAS-A system for processing/analyzing hyperspectral data [J]. Technical note, Canadian Journal of Remote Sensing, 1998, 24(2):99-113 [11] Ruff S W, Christensen P R, Blaney D L, et al. The rocks of Gusev Crater as viewed by the Mini-TES instrument [J]. Journal of Geophysics Research, 2006, 111(E12), doi: 10.1029/2006JE002747
点击查看大图
计量
- 文章访问数: 3737
- HTML全文浏览量: 44
- PDF下载量: 2317
- 被引次数: 0