CMAC neural network for the rudder dynamic load simulator of unmanned aerial vehicles
-
摘要: 为解决无人机舵面负载模拟系统中非线性和多余力矩扰动问题,利用小脑模型神经网络非线性逼近能力强、结构简单、适于实时控制等特点,采用小脑模型和传统PD(Proportional-Derivative)控制结合的复合控制策略,由小脑模型实现前馈控制,PD控制实现反馈控制,以保证在系统运行各阶段的控制精度.分析讨论了复合控制的不稳定性问题,研究了基于可信度分配和学习率自适应调整的改进型小脑模型的应用情况,提出一种适用于单输入单输出系统的简化小脑模型复合控制设计方法.仿真结果表明该方法有效地解决了小脑模型和PD复合控制的不稳定问题,改善了系统动态加载性能,并具有很好的抗干扰性能.Abstract: In order to solve the nonlinearity and the surplus torque disturbance in the rudder load simulator of the unmanned aerial vehicles, a hybrid controller was proposed with the cerebellar model articulation controller(CMAC) network and the traditional proportional-derivative(PD) controller. The CMAC can simulate the nonlinear continuous function with high approximation and high speed learning rate which is suitable for the real time control of nonlinear systems. In the hybrid controller, the CMAC performed the feed forward control and the PD controller realized the feedback control to ensure the accuracy in process of the control. The instability of hybrid controller was discussed and analyzed, the application of credit-assigned and adaptive learning rate CMAC hybrid controller was researched and a simple one-input and one-output CMAC hybrid control method was proposed. The simulation results show the method has settled the unstable problem of the hybrid controller and effectively improved the system dynamics with high robustness.
-
[1] 杨波,王俊奎.基于改进的CMAC的电动加载系统复合控制[J].航空学报, 2008,29(5):1314-1318 Yang Bo,Wang Junkui. Hybrid control based on improved CMAC for motor-driven loading system[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1314-1318(in Chinese) [2] 陈卉, 周萍, 欧阳楷. 小脑模型CMAC网络结构及有关参数的确定[J]. 计算机工程, 2003,2(2):252-254 Chen Hui, Zhou Ping, Ouyang Kai. Design of structure and arguments of CMAC[J].Computer Engineering, 2003,2(2):252-254(in Chinese) [3] Su Sh F, Tao T, Hung T H. Credit assigned CMAC and its application to online learning robust controllers[J]. IEEE Transactions on System, Man and Cybernetics, Part B, 2003, 33(2):202-213 [4] 时文飞. 基于人工神经网络与PID的复合控制研究 . 重庆:重庆大学电气工程学院,2007 Shi Wenfei. The study of compound control based on artificial neural network and PID . Chongqing:College of Electrical Engineering, Chongqing University, 2007(in Chinese)
点击查看大图
计量
- 文章访问数: 3447
- HTML全文浏览量: 155
- PDF下载量: 1118
- 被引次数: 0