Synthesis and atomic oxygen resistance of phosphorus-containing polyimide
-
摘要: 利用自行合成的含磷芳香族二胺单体——二(3-氨基苯基)苯基氧化磷(DAPPO),制备了一系列含磷聚酰亚胺薄膜.在原子氧地面模拟设备中对该薄膜进行了原子氧暴露实验,并采用场发射扫描电子显微镜(FE-SEM)和X射线光电子能谱(XPS)等分析手段对原子氧暴露前后薄膜表面的聚集态结构和化学结构演化进行了分析.结果表明,原子氧暴露后,引入含磷二胺单体的聚酰亚胺薄膜表面形成了富磷保护层,剥蚀率减小,抗原子氧性能明显提高, 磷质量分数为5.47%的聚酰亚胺薄膜在原子氧作用20h的总剥蚀率分别降低为Kapton和Upliex-R型聚酰亚胺的13%和20%.Abstract: A series of phosphorus-containing polyimide films were synthesized by a self made phosphorus-containing diamine, bis( m -aminophenyl)phenylphosphine oxide (DAPPO). The atomic oxygen (AO) resistance testes of films were carried out using a ground-based atomic oxygen effects simulation facility of Beijing University of Aeronautics and Astronautics. The effects of phosphorus content on the morphology and structure evolvement of polyimide films were investigated using a field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectrometer (XPS) respectively. The results indicate that the Kapton and Upliex-R films were seriously damaged and formed lots of hill structure, but a phosphorus-rich layer was formed on the film based on the DAPPO after AO exposure, which decreased the erosion rate and obviously improved the AO resistance of the phosphorus-containing polyimide films, when the DAPPO content was 5.47% by weight, the erosion rate of phosphorus-containing polyimide film after 20 hour-AO exposure was only 13% and 20% of the Kapton and Upliex-R films.
-
Key words:
- phosphorus-containing diamine /
- atomic oxygen /
- structure evolvement /
- polyimide
-
[1] 多树旺,李美拴,张亚明,等.低地轨道环境中的原子氧对空间材料的侵蚀与防护涂层[J].腐蚀科学与防护技术, 2002,14(3):152-156 Duo Shuwang, Li Meishuan, Zhang Yaming, et al. Atomic oxygen attack on space materials in LEO environment and protective coatings[J]. Corrosion Science and Protection Technology, 2002, 14(3): 152-156 (in Chinese) [2] Bruce A B, Kim K de G, Sharon K M. Low earth orbital atomic oxygen interactions with spacecraft materials . NASA/TM-2004-213400, 2004 [3] Gittemeier K. Low earth orbit environmental effects on space tether materials . Alabama: The Department of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, 2005 [4] Leger L, Visentine J, Santos-Mason B. Selected materials issues associated with space station[J]. SAMPE Quarterly, 1987, 18(2): 48-54 [5] 湛永钟,张国定.低地球轨道环境对材料的影响[J].宇航材料工艺,2003(1):1-5,23 Zhan Yongzhong, Zhang Guoding. Low earth orbit environmental effects on materials[J]. Aerospace Materials and Technology, 2003(1): 1-5,23 (in Chinese) [6] 盛磊.原子氧环境对聚合物及其复合材料性能的影响[J].中国空间科学技术,1994(5):54-61 Sheng Lei. Effects of polymer and composites properties by atomic oxygen exposure[J]. Chinese Space Science and Technology, 1994(5): 54-61 (in Chinese) [7] 丁孟贤.聚酰亚胺—化学、结构与性能的关系及材料[M].北京:科学出版社,2006:1-7 Ding Mengxian. Polymides: chemistry, relationship between structure and properties and materials[M]. Beijing: Science Press, 2006:1-7 (in Chinese) [8] 童靖宇,刘向鹏,孙刚,等.原子氧/紫外综合环境模拟实验与防护技术[J].真空科学与技术学报,2006,26(4):263-267 Tong Jingyu, Liu Xiangpeng, Sun Gang, et al. Simulation of combined environment of atomic oxygen and ultraviolet and development of protection technologies[J]. Chinese Journal of Vacuum Science and Technology, 2006, 26(4): 263-267 (in Chinese) [9] 刘向鹏,童靖宇,李金洪.航天器薄膜材料在原子氧环境中退化研究[J].航天器环境工程,2006,23(1):39-41,59 Liu Xiangpeng, Tong Jingyu, Li Jinhong. Study on the degradation of spacecraft film material due to AO interaction[J]. Spacecraft Environment Engineering, 2006, 23(1): 39-41, 59 (in Chinese) [10] Devapal D, Packirisamy S, Korulla R M, et al. Atomic oxygen resistant coating from poly (tetramethyldisilylene co-styrene)[J]. Journal of Applied Polymer Science, 2004, 94(6): 2368-2375 [11] Wang Xin, Zhao Xiaohu. The effects of atomic oxygen on polyimide resin matrix composite containing nano-silicon dioxide[J]. Nuclear Instruments and Methods in Physics Research B, 2006, 243(2): 320-324 [12] Duo Shuwang, Li Meishuan. Resistance of polyimide/silica hybrid films to atomic oxygen attack[J]. Surface & Coatings Technology, 2006, 200(24): 6671-6677 [13] Ryo T. A polyimide nanocomposite from octa(aminophenyl) silsesquioxane[J]. Chem Mater, 2003,15(3):793-797 [14] Rene I G, Sandra J T, Timothy K M, et al. Synthesis and atomic oxygen erosion testing of space-survivable POSS (polyhedral oligomeric silsesquioxane) polyimides . NASA/TM-2003-0801109, 2003 [15] Phillips H S, Haddad S T, Tomczak J S. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers[J]. Current Opinion in Solid State and Materials Science, 2004, 8:21-29 [16] Wright M E, Petteys B J, Guenthner A J, et al. Chemical modification of fluorinated polyimides: new thermally curing hybrid polymers with POSS[J]. Macromolecules, 2006, 39: 4710-4718 [17] Illingsworth M L, Banks B A. Zr-containg 4-4--ODA/PMDA polyimide composites . NASA/TM-2001-211099, 2001 [18] Watson K A, Palmieri F L, Connell J W. Space environmentally stable polyimides and copolyimides derived from diphenyl-phosphine oxide [J]. Macromolecules, 2002, 35: 4968-4974 [19] John W C, Kent A W. Polyimides containing fluoring and phosphorus for potential space applications . NASA-2000-fp-jwc, 2000 [20] Kent A W, John W C. Space environmentally stable polyimides and copolyimides . NASA -2000-45Sampe Kaw, 2000 [21] Liu Y, Hsiue G, Lee R, et al. Phosphorus-containing epoxy for flame retardant III: using phosphorylated diamines as curing agents[J]. Journal of Applied Polymer Science, 1997, 63(7):895-900
点击查看大图
计量
- 文章访问数: 3767
- HTML全文浏览量: 148
- PDF下载量: 1416
- 被引次数: 0