Filtering algorithm used for high dynamic GPS frequency estimation
-
摘要: 针对常用高动态GPS(Global Positioning System)频率估计算法扩展卡尔曼滤波(EKF,Extended Kalman Filter)的缺陷,提出了一种新的称为简化无迹高斯粒子滤波(SUGPF,Simplified Unscented Gaussian Particle Filter)的算法.SUGPF将卡尔曼滤波(KF,Kalman Filter)、无迹卡尔曼滤波(UKF,Unscented Kalman Filter)与高斯粒子滤波(GPF, Gaussian Particle Filter)三者相结合.在时间更新阶段,用KF的方法更新预测分布;在测量更新阶段,用UKF的方法得到重要采样函数,并用GPF的方法更新后验分布.仿真结果表明:与EKF和UKF相比,SUGPF性能更优越,功能更全面,在高斯与非高斯观测噪声环境下均能取得与GPF类似的良好性能,并且其计算复杂度低于GPF.Abstract: Aiming at the drawbacks of the extended Kalman filter (EKF) which is the widely used GPS frequency estimation algorithm in high dynamic circumstance, a novel filtering algorithm called simplified unscented Gaussian particle filter (SUGPF) was proposed. The SUGPF is the combination of Kalman filter (KF), unscented Kalman filter (UKF) and Gaussian particle filter (GPF). In time update step, KF methodology was used to update the predictive distributions. In measurement update step, the UKF methodology was used to obtain the important sampling function, and the posterior distributions were updated by using the methodology of GPF. The simulation results indicate that the SUGPF has improved performance and versatility over the EKF and UKF, under both Gaussian and non-Gaussian observation noise condition, SUGPF can achieve good performance which is similar as that of the GPF, and the computational complexity of the SUGPF is lower than that of the GPF.
-
Key words:
- global positioning system /
- particle filter /
- Kalman filter
-
[1] Vilnrotter V A, Hinedi S, Kumar R. Frequency estimation techniques for high dynamic trajectories[J]. IEEE Trans on Aerospace and Electronic Systems, 1989, 25(4):559-577 [2] Agurre S, Hinedi S. Two novel automatic frequency tracking loops[J]. IEEE Trans on Aerospace and Electronic Systems, 1989, 25(5):749-760 [3] Hurd W, Statman J I, Vilnrotter V A. High dynamic GPS receiver using maximum likelihood estimation and frequency tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 1987, 23(4):425-436 [4] Kumar R. Fast frequency acquisition via adaptive least-square algorithm[J]. IEE Proceedings Pt F, 1989, 136(4): 155-160 [5] 李小民, 刘晖, 郑利龙, 等. 高动态环境扩频系统伪码延时的精确估计方法[J]. 北京航空航天大学学报, 2000, 26(2):129-132 Li Xiaomin, Liu Hui, Zheng Lilong, et al. Precise estimation method of pseudo-random code delay of spread spectrum system in high dynamic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(2):129-132(in Chinese) [6] 胡士强,敬忠良. 粒子滤波算法综述[J]. 控制与决策,2005,20(4): 361-365 Hu Shiqiang, Jing Zhong liang. Overview of particle filter[J]. Control and Decision, 2005, 20(4): 361-365 (in Chinese) [7] Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation //Proceedings of IEEE Symposium 2000 on Adaptive Systems for Signal Processing, Communications and Control. Lake Louise: IEEE Standard Office, 2000: 153-158 [8] 刘旭,张其善,杨东凯. 一种用于GPS/DR组和定位的非线性滤波算法[J].北京航空航天大学学报, 2007, 33(2):184-187 Liu Xu, Zhang Qishan, Yang Dongkai. Nonlinear filter algorithm for GPS/DR integrated positioning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(2):184-187 (in Chinese) [9] Kotecha J H, Djuric P M. Gaussian particle filtering[J]. IEEE Trans on Signal Processing, 2003, 51(10): 2592-2601 [10] Zhuang W H, Tranquilla J. Digital baseband processor for the GPS receiver modeling and simulations[J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29(4):1343-1349 [11] Kotecha J H, Djuric P M. Gaussian sum particle filtering[J]. IEEE Trans on Signal Processing, 2003, 51(10):2602-2612
点击查看大图
计量
- 文章访问数: 3341
- HTML全文浏览量: 76
- PDF下载量: 1228
- 被引次数: 0