留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于高动态GPS频率估计的滤波算法

朱云龙 杨东凯 柳重堪

朱云龙, 杨东凯, 柳重堪等 . 一种用于高动态GPS频率估计的滤波算法[J]. 北京航空航天大学学报, 2009, 35(1): 23-27.
引用本文: 朱云龙, 杨东凯, 柳重堪等 . 一种用于高动态GPS频率估计的滤波算法[J]. 北京航空航天大学学报, 2009, 35(1): 23-27.
Zhu Yunlong, Yang Dongkai, Liu Zhongkanet al. Filtering algorithm used for high dynamic GPS frequency estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1): 23-27. (in Chinese)
Citation: Zhu Yunlong, Yang Dongkai, Liu Zhongkanet al. Filtering algorithm used for high dynamic GPS frequency estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1): 23-27. (in Chinese)

一种用于高动态GPS频率估计的滤波算法

基金项目: 国家自然科学基金资助项目(60602046)
详细信息
    作者简介:

    朱云龙(1978-),男,北京人,博士生,buaazhuyl@sina.com.

  • 中图分类号: P 228.4

Filtering algorithm used for high dynamic GPS frequency estimation

  • 摘要: 针对常用高动态GPS(Global Positioning System)频率估计算法扩展卡尔曼滤波(EKF,Extended Kalman Filter)的缺陷,提出了一种新的称为简化无迹高斯粒子滤波(SUGPF,Simplified Unscented Gaussian Particle Filter)的算法.SUGPF将卡尔曼滤波(KF,Kalman Filter)、无迹卡尔曼滤波(UKF,Unscented Kalman Filter)与高斯粒子滤波(GPF, Gaussian Particle Filter)三者相结合.在时间更新阶段,用KF的方法更新预测分布;在测量更新阶段,用UKF的方法得到重要采样函数,并用GPF的方法更新后验分布.仿真结果表明:与EKF和UKF相比,SUGPF性能更优越,功能更全面,在高斯与非高斯观测噪声环境下均能取得与GPF类似的良好性能,并且其计算复杂度低于GPF.

     

  • [1] Vilnrotter V A, Hinedi S, Kumar R. Frequency estimation techniques for high dynamic trajectories[J]. IEEE Trans on Aerospace and Electronic Systems, 1989, 25(4):559-577 [2] Agurre S, Hinedi S. Two novel automatic frequency tracking loops[J]. IEEE Trans on Aerospace and Electronic Systems, 1989, 25(5):749-760 [3] Hurd W, Statman J I, Vilnrotter V A. High dynamic GPS receiver using maximum likelihood estimation and frequency tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 1987, 23(4):425-436 [4] Kumar R. Fast frequency acquisition via adaptive least-square algorithm[J]. IEE Proceedings Pt F, 1989, 136(4): 155-160 [5] 李小民, 刘晖, 郑利龙, 等. 高动态环境扩频系统伪码延时的精确估计方法[J]. 北京航空航天大学学报, 2000, 26(2):129-132 Li Xiaomin, Liu Hui, Zheng Lilong, et al. Precise estimation method of pseudo-random code delay of spread spectrum system in high dynamic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(2):129-132(in Chinese) [6] 胡士强,敬忠良. 粒子滤波算法综述[J]. 控制与决策,2005,20(4): 361-365 Hu Shiqiang, Jing Zhong liang. Overview of particle filter[J]. Control and Decision, 2005, 20(4): 361-365 (in Chinese) [7] Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation //Proceedings of IEEE Symposium 2000 on Adaptive Systems for Signal Processing, Communications and Control. Lake Louise: IEEE Standard Office, 2000: 153-158 [8] 刘旭,张其善,杨东凯. 一种用于GPS/DR组和定位的非线性滤波算法[J].北京航空航天大学学报, 2007, 33(2):184-187 Liu Xu, Zhang Qishan, Yang Dongkai. Nonlinear filter algorithm for GPS/DR integrated positioning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(2):184-187 (in Chinese) [9] Kotecha J H, Djuric P M. Gaussian particle filtering[J]. IEEE Trans on Signal Processing, 2003, 51(10): 2592-2601 [10] Zhuang W H, Tranquilla J. Digital baseband processor for the GPS receiver modeling and simulations[J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29(4):1343-1349 [11] Kotecha J H, Djuric P M. Gaussian sum particle filtering[J]. IEEE Trans on Signal Processing, 2003, 51(10):2602-2612
  • 加载中
计量
  • 文章访问数:  3341
  • HTML全文浏览量:  76
  • PDF下载量:  1228
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-01-18
  • 网络出版日期:  2009-01-31

目录

    /

    返回文章
    返回
    常见问答