Entropy correction analyses for Roe scheme
-
摘要: 针对Roe格式中较为流行的3类熵修正:Muller型、Harten-Yee型和Harten-Hyman型熵修正,从理论分析入手, 辅以Euler方程为控制方程的激波管问题,前台阶流动和运动激波的双马赫反射3个数值实验,对不同熵修正的性能做了深入研究,得出如下结论: Muller型和Harten-Yee型熵修正方法作用于激波和非物理的膨胀激波2种情况:激波情况下引入的数值耗散,能根本改善"Carbuncle"现象,膨胀激波时其数值粘性也足以使膨胀激波得以耗散;而类Harten-Hyman型熵修正只对膨胀过程起修正作用,对激波情况无效,不能改善"Carbuncle"现象,该类熵修正的数值粘性较小,不足以使膨胀过程正确求解;直接采用 δ 值代替特征值的特征值修正方法效果好于传统的特征值修正方法.Abstract: Three types’ entropy fix formulations for the Roe scheme were analyzed in theory and assessed by three numerical tests which were shock tube problem, step flow and double Mach reflection. The results show that "Carbuncle phenomena" occurs when capturing strong shock because of the original Roe scheme-s numerical instability. Muller-s and Harten-Yee-s entropy fix methods introduce numerical dissipation to both shock and non-physical expansion shock processes. The numerical dissipation improves the Roe scheme-s numerical stability and cures "Carbuncle phenomena" entirely for shock case and diffuses the expansion shock completely as well. Harten-Hyman type-s entropy correction formulations do no contribution to shock case and can not cure the "Carbuncle phenomena". They can only fix non-physical expansion processes partially because their numerical dissipation is not large enough. The eigenvalue correction method which directly uses delta replace eigenvalue itself exceeds the traditional method.
-
Key words:
- computational fluid dynamics /
- numerical analysis /
- shock waves
-
[1] Roe P L. Approximate Riemann solvers parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981,43(2):357-372 [2] 阎超. 计算流体力学方法及应用[M].北京: 北京航空航天大学出版社, 2006: 64-66 Yan Chao. Computational fluid dynamics method and application[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006:64-66 (in Chinese) [3] Muller B. Simple improvements if an upwind TVD scheme for hypersonic flow . AIAA-89-1977, 1989 [4] Yee H C. Upwind and symmetric shock-capturing schemes . NASA-TM-89464, 1987 [5] Harten A , Hyman J M. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws [J]. Journal of Computational Physics, 1983, 50(2):235-269 [6] Kermani M J, Pleet E G. Modified entropy correction formula for the roe scheme . AIAA-2001-0083, 2001 [7] Sanders R, Morano E, Druguet M C. Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics [J]. Journal of Computational Physics, 1998, 145(2):511-537 [8] Woodward P, Colella P. The numerical simulation of two dimensional fluid flow with strong shocks [J]. Journal of Computational Physics, 1984, 54(1): 115-173 [9] Anderson D J. Computational fluid dynamics: the basis with applications [M]. New York: McGraw-Hill, 1995:502-504 [10] Maurizio P, Domenic D. Numerical instabilities in upwind methods: analysis and cures for the "carbuncle" phenomenon[J]. Journal of Computational Physics, 2001, 166(2):271-301 [11] 谢锦睿,吴颂平.TVD格式与高超音速气动加热数值模拟[J].北京航空航天大学学报, 2007, 33(4):392-396 Xie Jinrui,Wu Songping. TVD scheme and numerical simulation of aerodynamic heating in hypersonic flows[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4):392-396 (in Chinese)
点击查看大图
计量
- 文章访问数: 3777
- HTML全文浏览量: 152
- PDF下载量: 2765
- 被引次数: 0