Modeling and finite element analysis of thermal barrier coatings in IR NDT
-
摘要: 在柱坐标系下以轴对称模型描述热障涂层结构TNDT(Thermal Non-Destructive Testing)的瞬态热传导,建立相应的物理模型.用有限元分析软件ANSYS计算热障涂层结构受热脉冲激励后的温度场,研究TNDT可检信息参数(如最大温差和最大对比度)与脱粘缺陷半径、深度、涂层厚度的关系.结果表明,在涂层厚度一定时,最大温差和最大对比度与脱粘缺陷半径成非线性关系,它们随着缺陷半径的增大而增加,且存在上限饱和值;在缺陷半径一定时,最大温差和最大对比度与涂层厚度成非线性关系,且随着涂层厚度的增加而减小.这些研究结果为热障涂层内部脱粘的红外热无损检测及表征提供了基本理论依据.Abstract: The transient heat conduction of TBC(thermal barrier coatings) structures in TNDT(thermal non-destructive testings) was described by an axisymmetrical model in a cylindrical coordinate, and the corresponding physical model was constructed. The temperature field of TBC structures stimulated by a heating pulse was analyzed by using the FEA(finite element analysis) software ANSYS, and the relations between information parameters(such as maximum differential temperature and maximum contrast) and defect parameters(such as defect radius, depth, coating thickness and thickness difference) were studied. The results show that, at a fixed coating thickness, the maximum differential temperature and maximum contrast are a nonlinear function of the defect radius respectively and increase with the defect radius, and their saturation value exist. At a fixed defect radius, the maximum differential temperature and maximum contrast are a nonlinear function of the coating thickness respectively, and decrease when the coating thickness increasing. These results provide a theoretical support for the detection and characterization of delamination in TBC structures by infrared thermography.
-
Key words:
- infrared /
- nondestructive testing /
- modeling /
- finite element analysis /
- thermal barrier coatings
-
[1] Bision P G,Marinetti S,Grinzato E, et al. Inspecting thermal barrier coatings by IR thermography Cramer K, Maldague X. Proc SPIE Thermosense XXV. Orlando: SPIE, 2003:318-327 [2] Shepard Steven M, Hou Yulin,Lhota James R, et al. Thermographic measurement of thermal barrier coating thickness Peacock G, Burleigh D, Miles J, et al. Proc SPIE Thermosense XXVII. Orlando: SPIE,2005:407-410 [3] 孔祥谦. 有限单元法在传热学中的应用[M]. 第3版. 北京:科学出版社, 1986:169-180 Kong Xiangqian. Application of finite element method in heat transfer [M]. 3rd ed. Beijing: Science Press, 1986:169-180 (in Chinese) [4] Saeed Moaveni. 有限元分析:ANSYS理论与应用[M]. 第2版.北京: 电子工业出版社, 2008:322-324 Saeed Moaveni. Finite element analysis: theory and application with ANSYS [M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2008:322-324(in Chinese) [5] 《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2001:9-300 China Aeronautical Materials Handbook Redaction Committee. China aeronautical materials handbook [M]. Beijing: Standard Press of China, 2001:9-300(in Chinese) [6] 杨世铭,陶文铨. 传热学[M]. 第3版. 北京:高等教育出版社, 2004:20-25 Yang Shiming, Tao Wenquan. Heat transfer [M]. 3rd ed. Beijing: Higher Education Press, 2004:20-25(in Chinese)
点击查看大图
计量
- 文章访问数: 3494
- HTML全文浏览量: 188
- PDF下载量: 1050
- 被引次数: 0