Modeling and finite element analysis of thermal barrier coatings in IR NDT
-
摘要: 在柱坐标系下以轴对称模型描述热障涂层结构TNDT(Thermal Non-Destructive Testing)的瞬态热传导,建立相应的物理模型.用有限元分析软件ANSYS计算热障涂层结构受热脉冲激励后的温度场,研究TNDT可检信息参数(如最大温差和最大对比度)与脱粘缺陷半径、深度、涂层厚度的关系.结果表明,在涂层厚度一定时,最大温差和最大对比度与脱粘缺陷半径成非线性关系,它们随着缺陷半径的增大而增加,且存在上限饱和值;在缺陷半径一定时,最大温差和最大对比度与涂层厚度成非线性关系,且随着涂层厚度的增加而减小.这些研究结果为热障涂层内部脱粘的红外热无损检测及表征提供了基本理论依据.Abstract: The transient heat conduction of TBC(thermal barrier coatings) structures in TNDT(thermal non-destructive testings) was described by an axisymmetrical model in a cylindrical coordinate, and the corresponding physical model was constructed. The temperature field of TBC structures stimulated by a heating pulse was analyzed by using the FEA(finite element analysis) software ANSYS, and the relations between information parameters(such as maximum differential temperature and maximum contrast) and defect parameters(such as defect radius, depth, coating thickness and thickness difference) were studied. The results show that, at a fixed coating thickness, the maximum differential temperature and maximum contrast are a nonlinear function of the defect radius respectively and increase with the defect radius, and their saturation value exist. At a fixed defect radius, the maximum differential temperature and maximum contrast are a nonlinear function of the coating thickness respectively, and decrease when the coating thickness increasing. These results provide a theoretical support for the detection and characterization of delamination in TBC structures by infrared thermography.
-
Key words:
- infrared /
- nondestructive testing /
- modeling /
- finite element analysis /
- thermal barrier coatings
-
[1] Bision P G,Marinetti S,Grinzato E, et al. Inspecting thermal barrier coatings by IR thermography Cramer K, Maldague X. Proc SPIE Thermosense XXV. Orlando: SPIE, 2003:318-327 [2] Shepard Steven M, Hou Yulin,Lhota James R, et al. Thermographic measurement of thermal barrier coating thickness Peacock G, Burleigh D, Miles J, et al. Proc SPIE Thermosense XXVII. Orlando: SPIE,2005:407-410 [3] 孔祥谦. 有限单元法在传热学中的应用[M]. 第3版. 北京:科学出版社, 1986:169-180 Kong Xiangqian. Application of finite element method in heat transfer [M]. 3rd ed. Beijing: Science Press, 1986:169-180 (in Chinese) [4] Saeed Moaveni. 有限元分析:ANSYS理论与应用[M]. 第2版.北京: 电子工业出版社, 2008:322-324 Saeed Moaveni. Finite element analysis: theory and application with ANSYS [M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2008:322-324(in Chinese) [5] 《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2001:9-300 China Aeronautical Materials Handbook Redaction Committee. China aeronautical materials handbook [M]. Beijing: Standard Press of China, 2001:9-300(in Chinese) [6] 杨世铭,陶文铨. 传热学[M]. 第3版. 北京:高等教育出版社, 2004:20-25 Yang Shiming, Tao Wenquan. Heat transfer [M]. 3rd ed. Beijing: Higher Education Press, 2004:20-25(in Chinese) 期刊类型引用(8)
1. 陈钊渊,吴优,张娜,马超,王国仕,罗林波. 物联网恶意流量检测下基于改进Apriori算法的关联数据回溯分析. 自动化与仪器仪表. 2024(01): 52-55 . 百度学术
2. 曹伟康,林宏刚. 基于加权特征融合的物联网设备识别方法. 计算机科学. 2024(S2): 885-893 . 百度学术
3. Yu Zhang,Bei Gong,Qian Wang. BLS-identification: A device fingerprint classification mechanism based on broad learning for Internet of Things. Digital Communications and Networks. 2024(03): 728-739 . 必应学术
4. 李志华,王志豪. 基于LCNN和LSTM混合结构的物联网设备识别方法. 信息网络安全. 2023(06): 43-54 . 百度学术
5. 余长宏,陆雅,王海鑫,高明. 基于滑动时间窗的物联网设备流量分类算法. 计算机工程. 2023(07): 259-268 . 百度学术
6. 崔蕾,周湘贞,王枚. 基于区块链和雾计算的IoT轻量级身份验证和访问控制. 贵阳学院学报(自然科学版). 2023(03): 33-39 . 百度学术
7. 师小龙,陈浩林,王佳康,尹昱成,徐一楠,台永丰,杨睿,李燕飞. 基于随机森林的轨道交通成本关键要素辨识方法. 中国高新科技. 2022(06): 76-78 . 百度学术
8. 赵季红,乔琳琳,王颖. 基于多任务和卷积神经网络的业务识别算法. 西安邮电大学学报. 2021(01): 1-6 . 百度学术
其他类型引用(13)
-

计量
- 文章访问数: 3559
- HTML全文浏览量: 192
- PDF下载量: 1052
- 被引次数: 21