Locomotion gait control algorithm for climbing worm robot
-
摘要: 设计了一种基于仿生原理的爬壁蠕虫机器人,分析了这种机器人的结构,并利用仿生学原理设计了基于三角波和梯形波特点的两种运动步态.在分析现有神经中枢控制CPG(Central Pattern Generator)算法基础上,应用循环抑制CPG模型和相互抑制CPG模型,构建了爬壁蠕虫机器人的三角波步态CPG控制网络和梯形波步态CPG控制网络,并结合吸盘状态,加入反馈信号,实现了带有反馈的CPG控制算法.利用爬壁蠕虫机器人模型,仿真验证了这种控制算法对蠕动运动步态控制的有效性,通过在爬壁蠕虫机器人原理样机上的步态实验,证明了该算法的可行性.Abstract: A wall-climbing worm-like robot based on the bionics principle was designed and the structure feature of the climbing worm robot was analyzed. According to the structure and locomotion feature of the climbing worm robot and the bionics principle, the trapezoidal wave gait and triangular wave gait were proposed. Then the cyclic inhibitory central pattern generator (CPG) model and mutual inhibitory CPG model were adopted to control the climbing worm robot and a locomotion gait simulation based on CPG model was given. Furthermore, by combining the CPG output with the feedback signal from the sucker, the climbing worm robot realized the trapezoidal wave gait and triangular wave gait. Moreover, it was presented that real robot can successfully exhibit meandering movement by using controller output of the proposed architecture.
-
[1] Kiyotoshi M. Mechanisms of frequency and pattern control in the neural rhythm generator[J]. Biological Cybernetics, 1987,56:345-353 [2] Fukuoka Y, Kimura H, Cohen A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts[J]. International Journal of Robotics Research,2003, 22(3/4):187-202 [3] Taga G. Nonlinear dynamics of the human motor control real-time and anticipatory adaptation of locomotion and development of movements //Adaptive Motion of Animals and Machines. Tokyo:Springer, 2006:189-204 [4] 郑浩俊,张秀丽,关旭,等.基于生物中枢模式发生器原理的四足机器人[J].清华大学学报(自然科学版),2004,44(2):166-169 Zheng Haojun,Zhang Xiuli,Guan Xu, et al.Quadruped robot based on biological central pattern generator[J].Journal of Tsinghua University(Science and Technology),2004,44(2):166-169(in Chinese) [5] Inoue Kousuke,Ma Shugen,Jin Chenghua. Neural oscillator network-based controller for meandering locomotion of snake-like robots Proceedings-IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE,2004(5):5064-5069 [6] Lu Zhenli,Ma Shugen, Li Bin,et al.Serpentine locomotion of a snake-like robot controlled by cyclic inhibitory CPG model[J].Acta Automatica Sinica,2006,32(1):133-139 [7] Lu Zhenli, Ma Shugen, Li Bin,et al. Design of a snake-like robot controller with cyclic inhibitory CPG model 2005 IEEE International Conference on Robotics and Biomimetics.Piscataway, NJ:IEEE,2005:35-40 [8] Lu Zhenli, Ma Shugen, Li Bin,et al. Locomotion of a snake-like robot controlled by the bidirectional cyclic inhibitory CPG model robotics and biomimetics 2006 IEEE International Conference on Robotics and Biomimetics. Piscataway,NJ:IEEE,2006:1209-1214 [9] Lu Zhenli,Ma Shugen,Li Bin, et al. 3D locomotion of a snake-like robot controlled by cyclic inhibitory CPG model intelligent robots and systems IEEE International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE,2006:3897-3902 [10] Gonzalez-Gomez J,Zhang Houxiang,Boemo E,et al. Locomotion capabilities of a modular robot with eight pitch-yaw-connecting modules 9th International Conference on Climbing and Walking Robots.Piscataway,NJ:IEEE,2006:150-156
点击查看大图
计量
- 文章访问数: 3847
- HTML全文浏览量: 153
- PDF下载量: 1372
- 被引次数: 0